516-0938/02 – Theory of Solids (TPL)

Gurantor departmentInstitute of PhysicsCredits10
Subject guarantorprof. Dr. RNDr. Jiří LuňáčekSubject version guarantorprof. Dr. RNDr. Jiří Luňáček
Study levelpostgraduateRequirementChoice-compulsory
YearSemesterwinter + summer
Study languageCzech
Year of introduction2003/2004Year of cancellation2015/2016
Intended for the facultiesHGFIntended for study typesDoctoral
Instruction secured by
LoginNameTuitorTeacher giving lectures
LUN10 prof. Dr. RNDr. Jiří Luňáček
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 20+0
Part-time Examination 20+0

Subject aims expressed by acquired skills and competences

Explain basic ideas in the solid state physics – free electrons and the band model Collect and interpret fundamental differences between metals and semiconductors Collect and explain basic sort of magnetism in solid state physics Formulate fundamental principles and concepts in the transport phenomena theory in solid state physics

Teaching methods

Lectures
Individual consultations

Summary

This subject creates introduction to the solid-state theory. The quantum and statistics theory background are supposed. Students take up with basic principles, models and approximations used for theoretical study of the metal and semiconductor materials.

Compulsory literature:

1. KITTEL, CH.: Introduction to Solis State Physics. John Wiley & Sons, Inc. 1976, p. 598.

Recommended literature:

1. WERT, CH.A., THOMSON, R.M.: Physics of Solids. McGraw Hill, Inc., 1964, p.436.

Additional study materials

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

The basic physics courses and Solid State Physics must be finished.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Basic approximations in solid state physics 2. Fermi gas of free electrons 3. Graiting vibrations and heat propreties of solid state 4. Energy bands 5. Semiconducter crystals 6. Fermi surfaces and metals 7. Diamagnetism and paramagnetism 8. Ferromagnetism and anti ferromagnetism

Conditions for subject completion

Full-time form (validity from: 2013/2014 Winter semester, validity until: 2015/2016 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Examination Examination   3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2015/2016 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2015/2016 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2014/2015 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2014/2015 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2013/2014 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2013/2014 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2012/2013 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2012/2013 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2011/2012 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2011/2012 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2010/2011 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Optional study plan
2010/2011 (P1701) Physics K Czech Ostrava Optional study plan
2010/2011 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.