516-0960/01 – Applications of photonic structures (AFS)

Gurantor departmentInstitute of PhysicsCredits10
Subject guarantordoc. RNDr. Dalibor Ciprian, Ph.D.Subject version guarantordoc. RNDr. Dalibor Ciprian, Ph.D.
Study levelpostgraduateRequirementChoice-compulsory
YearSemesterwinter + summer
Study languageCzech
Year of introduction2012/2013Year of cancellation2015/2016
Intended for the facultiesHGFIntended for study typesDoctoral
Instruction secured by
LoginNameTuitorTeacher giving lectures
CIP10 doc. RNDr. Dalibor Ciprian, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 20+0
Combined Examination 20+0

Subject aims expressed by acquired skills and competences

The subject is oriented on systematic explanation of phycis and applications of photonic structures

Teaching methods

Lectures
Seminars
Individual consultations

Summary

The subject is oriented on systematic explanation of phycis and applications of photonic structures

Compulsory literature:

1) Sakoda, K.: Optical Properties of Photonic Crystals, 2nd edition, 2004, Springer, ISBN-13: 978-3540206828 2) Zolla, F., Renversez, G., Nicolet, A.: Foundations of Photonic Crystal Fibres, 2nd revised edition, 2012, Imperial College Press, ISBN-13: 978-1848167285 3) Homola, J.: Surface Plasmon Resonance Based Sensors, 2010, Springer, ISBN-13: 978-3642070464 4) Udd, E. Spillman, W. B.: Design and Application of Fiber Optic Sensors, 2012, John Wiley & Sons, ISBN-13: 978-0470126844

Recommended literature:

1) Thevenaz, L.: Advanced Fiber Optics, 2011, EFPL Press, ISBN-13: 978-1439835173 2) Maier, S. A.: Plasmonics: Fundamentals and Applications, 2010, Springer, ISBN-13: 978-1441941138

Way of continuous check of knowledge in the course of semester

E-learning

Další požadavky na studenta

Systematic individual study is assumed.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Electromagnetic theory of periodic media 2. Computational methods for electromagnetic wave propagation in photonic structures (FEM, FMM, FDTD, BPM) 3. Basic types of photonic waveguides and resonators, their descriptions and characteristic features 4. Photonic structures applications in optic communication and integrated optics 5. Photonic structures application in photovoltaic systems 6. Surface plasmons in photonic structures 7. Photonic structures applications in chemical and physical quantities sensing

Conditions for subject completion

Combined form (validity from: 2013/2014 Winter semester, validity until: 2015/2016 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Examination Examination  
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2015/2016 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2015/2016 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2014/2015 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2014/2015 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan
2013/2014 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Choice-compulsory study plan
2013/2014 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner