545-0940/01 – Advanced Methods of Data Analysis and Processing (PMAZD)
Gurantor department | Department of Economics and Control Systems | Credits | 10 |
Subject guarantor | doc. Dr. Ing. Peter Vestenický | Subject version guarantor | doc. Dr. Ing. Peter Vestenický |
Study level | postgraduate | Requirement | Choice-compulsory |
Year | | Semester | winter + summer |
| | Study language | Czech |
Year of introduction | 2016/2017 | Year of cancellation | 2022/2023 |
Intended for the faculties | HGF | Intended for study types | Doctoral |
Subject aims expressed by acquired skills and competences
The subject is oriented on the big data storing and processing, utilization of data analysis tools, knowledge obtaining from databases, data mining, expert systems creation. Working with enterprise data - business intelligence tool to obtain enterprise knowledges, methods of information presentation
Teaching methods
Individual consultations
Summary
Pokročilé metody práce s daty – optimalizace datových struktur, analytické zpracování dat, práce s větším objemem dat, práce s neurčitými daty, využití bezeschémových databází, technologie Big data. Techniky dolování dat z databází a webu. Business inteligence – OLAP, datové sklady. Práce se znalostmi, expertní a semi-expertní systémy. Úvod do zpracování neurčitých, nepřesných a distribuovaných dat.
Compulsory literature:
Recommended literature:
Additional study materials
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
Semestral work focused on data processing application related to dissertation thesis.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Principles of data storage, data models.
2. Relational schematic, schematic-less databases.
3. Principles of modelling and data structure design.
4. Optimization of relational database schematic.
5. Data warehouse and its purposes.
6. Transformation of data, ETL.
7. OLAP data analysis.
8. Predictive and descriptive data mining technologies.
9. Technologies for data presentation and transformation.
10. Big data, its processing and utilization.
11. Semantic web, web mining.
12. Statistical methods of data analysis.
13. Knowledge modelling, expert and knowledge systems.
14. Inexplicit and distributed data processing.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction
Předmět neobsahuje žádné hodnocení.