548-0044/06 – Spatial Data Analysis (PAD)

Gurantor departmentDepartment of GeoinformaticsCredits5
Subject guarantorprof. Ing. Jiří Horák, Dr.Subject version guarantorprof. Ing. Jiří Horák, Dr.
Study levelundergraduate or graduateRequirementCompulsory
Year2Semesterwinter
Study languageCzech
Year of introduction2009/2010Year of cancellation
Intended for the facultiesHGFIntended for study typesFollow-up Master, Bachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
HOR10 prof. Ing. Jiří Horák, Dr.
JUR02 Ing. Lucie Orlíková, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 6+6

Subject aims expressed by acquired skills and competences

The objective is to learn student how to utilize selected methods of spatial analysis not included in other courses. It is focused on circular statistics, modelling of spatial distribution of events and relevant inferential methods to analyse their randomness, including multiple events. Large attention is dedicated to graph theory and its application for spatial tasks, statistical description of networks (local and global measures), selected tasks in graphs. Students get acqauinted with locational and alocational tasks, utilization of gravity theory, selected analysis for areal data, multivariate techniques for spatial data and a logistic regression.

Teaching methods

Lectures
Tutorials

Summary

The subject represents an advanced course of spatial analytical methods. It contains descriptive statistics for dots, circular statistics, methods of modelling of spatial distribution of events, inferential methods to analyse randomness of single dots as well as multiple events, explains basic terms of the graph theory, indicators used for local and global description of networks namely social networks, it introduces to the evaluation of transport accessibility, it explains selected tasks in graphs, basic methods for locational and alocational tasks, utilization of gravity theory, introduces selected analysis for areal data and multivariate techniques for spatial data, a basic predictive model for categorised variables using the logistic regression.

Compulsory literature:

Hilbe, J.M. Practical guide to logistic regression. CRC Press/Taylor & Francis, Boca Raton, 2016. S. 158. ISBN 978-1-4987-0957-6 Newman, M. Networks: an introduction. Oxford University Press. 2010 Rogerson, P. Statistical methods for geography, 5th ed. SAGE, LA, 2019. S. 405. ISBN 978-1-5264-9880- Smith M.J., Goodchild M.F., Longley P.A. Geospatial Analysis. 2011. Dostupné na http://www.spatialanalysisonline.com

Recommended literature:

Anselin L., Florax R., Rey S. (Eds.): Advances in Spatial Econometrics. Springer, 2004, pp. 51, 3ISBN 3540437290. Barabási, A.: Network Science. The Barabási-Albert Model. 2012. Dostupné na http://barabasi.com/f/622.pdf Batschelet, E.: Circular Statistics in Biology. Academic Press, 1981, London. Hosmer, D.W., Lemeshow, S., Sturdivant, R.X.. Applied logistic regression, Third edition. ed, Wiley series in probability and statistics. Wiley, 2013. S. 528. ISBN 978-1-118-54835-6

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

No additional requirements are imposed on the student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Definition, history and objectives of spatial analysis. Spatial statistics for point pattern. 2. Modelling of point spatial patterns – theoretical models. 3. Inferential statistical tests for point pattern. Analysis of multivariable point events. 4. Introduction to the graph theory. Graph types, spatial structures. 5. Statistical description of graphs and networks. Transport accessibility. 6. Selected tasks in graphs (MST, Gabriel network, Steiner tree, optimal route, traveler salesman problem). 7. Location and allocation tasks. Gravity theory. Analysis of interaction data. 8. Selected analysis for polygons (Areal interpolation. Districting, regionalization. Smoothing. Regression). 9. Multivariate techniques for spatial data – PCA, FA, DA 10. Multivariate techniques for spatial data - hierarchical and non-hierarchical spatial clustering 11. Spatial analysis of continual fields (principles of geostatistics, spatial autocorrelation, structural analysis, anisotropy). 12. Spatial analysis of continual fields (kriging and its variants). 13. Spatial analysis of continual fields (co-kriging, stochastic simulations). 14. Fractal dimension.

Conditions for subject completion

Full-time form (validity from: 2012/2013 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 33 (33) 17
                Projekt Project 26  10
                účast Other task type 7  0
        Examination Examination 67 (67) 18 3
                Písemná zkouška Written examination 50  18 3
                Ústní zkouška Oral examination 17  0
Mandatory attendence participation: Continuous check of processing tasks during exercises. Written and oral examination.

Show history

Conditions for subject completion and attendance at the exercises within ISP: Materials for an individual study are available at http://homel.vsb.cz/~hor10/Vyuka/ where you can find also topics for the exam. Consultations (both personal and online) with the lecturer are possible. The exercises are individual based on a semester project which has to be completed to the end of the exam period for the given semester. The exam is conducted only in person.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2023/2024 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2022/2023 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2021/2022 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2021/2022 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2020/2021 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2020/2021 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2019/2020 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2019/2020 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2018/2019 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2018/2019 (N3654) Geodesy, Cartography and Geoinformatics (3608T002) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2016/2017 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3646) Geodesy and Cartography (3646R006) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3646) Geodesy and Cartography (3646R006) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3646) Geodesy and Cartography (3646R006) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2012/2013 (N3646) Geodesy and Cartography (3602T002) Geoinformatics (20) K Czech Ostrava 1 Compulsory study plan
2011/2012 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3646) Geodesy and Cartography (3646R006) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2011/2012 (N3646) Geodesy and Cartography (3602T002) Geoinformatics (20) P Czech Ostrava 1 Compulsory study plan
2011/2012 (N3646) Geodesy and Cartography (3602T002) Geoinformatics (20) K Czech Ostrava 1 Compulsory study plan
2010/2011 (B3646) Geodesy and Cartography (3646R006) Geoinformatics P Czech Ostrava 2 Compulsory study plan
2010/2011 (B3646) Geodesy and Cartography (3646R006) Geoinformatics K Czech Ostrava 2 Compulsory study plan
2010/2011 (N3646) Geodesy and Cartography (3602T002) Geoinformatics (20) P Czech Ostrava 1 Compulsory study plan
2010/2011 (N3646) Geodesy and Cartography (3602T002) Geoinformatics (20) K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS - FMG 2016/2017 Full-time English Optional 501 - Study Office stu. block
O - ECTS FMG 2015/2016 Full-time Czech Optional 501 - Study Office stu. block
O - ECTS FMG - Bc. 2014/2015 Full-time Czech Optional 501 - Study Office stu. block
O - ECTS FMG - Bc. 2013/2014 Full-time Czech Optional 501 - Study Office stu. block
O - ECTS FMG - Bc. 2012/2013 Full-time Czech Optional 501 - Study Office stu. block

Assessment of instruction



2022/2023 Winter
2018/2019 Winter
2013/2014 Summer
2010/2011 Summer