Gurantor department | Department of Chemistry | Credits | 5 |

Subject guarantor | doc. Mgr. Lucie Bartoňová, Ph.D. | Subject version guarantor | doc. Mgr. Lucie Bartoňová, Ph.D. |

Study level | undergraduate or graduate | ||

Study language | English | ||

Year of introduction | 2019/2020 | Year of cancellation | |

Intended for the faculties | FMT | Intended for study types | Bachelor |

Instruction secured by | |||
---|---|---|---|

Login | Name | Tuitor | Teacher giving lectures |

BAR57 | doc. Mgr. Lucie Bartoňová, Ph.D. |

Extent of instruction for forms of study | ||
---|---|---|

Form of study | Way of compl. | Extent |

Full-time | Credit and Examination | 3+2 |

Subject objectives:
- to describe fundamental variables used for description and calculation of equilibrium composition of solution,
- to describe calculation procedures for solution of acid / base, complex-formation, precipitation and redox equilibria,
- to provide survey of factors affecting individual equilibria and comprising these factor into calculation procedure,
- to describe fundamental variables used for calculation in instrumental analysis and their significance for analytical determination,
- to describe procedure of evaluation of measured analytical signal,
- utilization and applications of theoretic knowledge for solution of practical examples from analytical praxis.

Lectures

Tutorials

Lectures are focused to explanation of fundamental principles, variables and procedures needed for performing calculations in analytical chemistry – in calculations of equilibrium concentrations, in titration methods, gravimetric determinations and in instrumental methods as well. Particular attention is drawn to training in practical exercises and using PC.

FERNANDO, Quitus and Michael D. RYAN. Calculations in analytical chemistry. New York: Harcourt Brace Jovanovich, 1982.

CHRISTIAN, Gary D. Analytical chemistry. 5th Ed., New York: John Wiley and Sons, 1994. ISBN 0471597619.

Credit test and oral exam.

Passing the calculations tests.
Spreadsheet calculations (on PC).

Subject has no prerequisities.

Subject has no co-requisities.

Lectures
1. Chemical thermodynamics of solutions. Fundamental relations among thermodynamic variables, tabulated values. Equilibrium constants, activity, activity coefficient. Ionic strength of solution and its calculation. Standard conditions, theory of inter-ionic forces, solvatation and association of ions, ionic diameters.
2. General approach for equilibria calculations, algorithms for the solution of more complicated equilibria, systematic approach for the equilibria calculations, balance equations – mass balance and charge balance.
3. Acid / base equilibria. pH of strong / weak acids and bases, salt hydrolysis, pH of buffers, Henderson – Hasselbalch equation, buffer capacity, dependence of pH upon temperature. Polyprotic acids and bases, equilibria distribution of particular species in solution in dependence on pH, construction of logarithmic and semilogarithmic diagrams (both using PC and without using PC), determination of distribution of individual species in solution in dependence on pH, utilization of the diagrams for evaluation of effect of pH at more complicated equilibria (e.g. complex-formation ones).
4. Alcalimetric titrations. Titrant, analyte, titration curves – titration of strong / weak acid and base, pH of equivalence point, indicators. Construction of titration curves on PC – effect of concetration of acid / base, dissociation constant, utilization of mathematic methods for evaluation of titration curves.
5. Titrations in non-aqueous solutions, amfiprotic solvents, titrations of extremely weak acids and bases, titration curves, selectrion of solvents with regard to dissociation constant of extremely weak acid / base, practical utilization, evaluation of titration curves.
6. Complex-formation equilibria. Stability constant of the complex, titration curves, calculation of equilibrium distribution of particular forms (species) of EDTA in dependence on pH, effect of pH during chelatometric determination, construction of titration curves on PC, utilization of mathematic methods for the evaluation of titration curves.
7. Redox equilibria. Redox reactions in organic chemistry, equilibria constant of the reaction, concentration of particular species in solution at redox equilibria, practical utilization of standard redox potentials values, construction of titration curves, equivalence point determination, utilization of mathematic methods for evaluation of titration curves.
8. Precipitation equilibria. Solubility product, solubility, gravimetry, effect of common ion in the solution, effect of indifferent electrolyte, effect of pH of the solution and complex formation on solubility of studied precipitate. Construction of titration curves, utilization of mathematic methods for evaluation of titration curves.
9. Potentiometry and conductometry. Potentiometric titration curve, utilization of mathematic methods for evaluation of titration curves. Calculation of equilibrium constants of reactions, galvanic cells, constant of conductivity cell, Ostwald´s dilution law.
10. Polarography and voltametry, diffusion current, polarographic wave, calculation of number of electrons and protons exchanged during electrode reaction, evaluation of reversibility / irreversibility of electrode reaction, effect of pH on shape of voltametric curves, utilization of voltametry for the determination of mechanism of more complicated redox reactions.
11. Separation methods – extraction, Nernst´s law, distribution constant, extraction yield, distribution ratio, ion exchangers, selectivity coefficient, exchange capacity of ion exchanger.
12. Column chromatography, elution parameters, reduced elution parameters, concept of theoretical plates and effective plates, height – equivalent of theoretic / effective plate, van Deemter equation, column efficiency.
13. Ultimate analysis. Analysis of gases on Orsat apparatus. Optical methods – frekvency, wave number, photon energy, prism disperzion, grating resolution. Polarimetry, refractometry, index of refraction.
14. Absorption spectrometry. Spectral transmittance, absorptance, reflectance, turbidity coefficient, Lambert-Beer´s law, molar absorption coefficient, mass absorption coefficient, mathematic methods used for the evaluation of 2 simultaneous species.
Theoretic / calculation classes
1. Calculation of activity coefficients, ionic strength, fundamental thermodynamic calculations.
2. Solution of more comples equilibria – calculation of equilibrium composition of solution, balance equations.
3. Calculation of pH in dependence of composition of solutions, polyprotic acids and bases, construction of logarithmic and semilogarithmic diagrams.
4. Calculations of titration curves and effect of given parameters on their shape and equivalence point.
5. Selection of suitable indicator, effect of non-aqueous solvent on shape of titration curve.
6. Calculation of equilibrium composition of the solution at complex-formation equilibria, metal content calculation that is not bound to complex, titration curves.
7. Redox equilibria calculation, titration curves, equivalence point determination.
8. Calculations of solubility and equilibrium composition of solution, effect of indifferent electrolyte, pH and other parameters on solubility, titration curves.
9. Potentiometry and conductometry calculations, equilibrium constants calculations, evaluation of potentiometric curves.
10. Polarography and conductometry calculations, number of electrons / protons exchanged during electrode reaction, analytical utilization of diffuse current, determination of reversibility / irreversibility of electrode reaction.
11. Separation methods – calculation of exchange capacity of ion-exchanger, distribution constants and ratios calculations.
12. Column chromatography – calculation of elution parameters, reduced variables, number of theoretic vs. effective plates.
13. Calculation of molecular formula, composition of gaseous sample when analysed on Orsat apparatus, refractivity index.
14. Spectral methods – recalculation of fundamental variables, absorption coefficients, mathematic approach to solution of overllapping peaks.

Task name | Type of task | Max. number of points
(act. for subtasks) | Min. number of points |
---|---|---|---|

Credit and Examination | Credit and Examination | 100 (100) | 51 |

Credit | Credit | 45 | 20 |

Examination | Examination | 55 | 10 |

Show history

Academic year | Programme | Field of study | Spec. | Zaměření | Form | Study language | Tut. centre | Year | W | S | Type of duty |
---|

Block name | Academic year | Form of study | Study language | Year | W | S | Type of block | Block owner | |
---|---|---|---|---|---|---|---|---|---|

FMT+9360 | 2022/2023 | Full-time | English | Optional | 600 - Faculty of Materials Science and Technology - Dean's Office | stu. block | |||

FMT+9360 | 2021/2022 | Full-time | English | Optional | 600 - Faculty of Materials Science and Technology - Dean's Office | stu. block | |||

FMT+9360 | 2021/2022 | Full-time | English | Optional | 600 - Faculty of Materials Science and Technology - Dean's Office | stu. block | |||

FMT+9360 | 2020/2021 | Full-time | English | Optional | 600 - Faculty of Materials Science and Technology - Dean's Office | stu. block | |||

FMT-new subjects | 2019/2020 | Full-time | English | Optional | 600 - Faculty of Materials Science and Technology - Dean's Office | stu. block |