618-0802/02 – Theory of Steelmaking Processes (TeoOcP)

Gurantor departmentDepartment of Metallurgy and FoundryCredits5
Subject guarantorprof. Ing. Zdeněk Adolf, CSc.Subject version guarantorprof. Ing. Zdeněk Adolf, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2004/2005Year of cancellation2015/2016
Intended for the facultiesFMTIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
ADO10 prof. Ing. Zdeněk Adolf, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

- student will be able to formulate conditions for equilibrium of processes and describe basic types of solutions (melts) - student will be able to characterise processes running at the interface metal-atmosphere and metal-slag - student will be able to solve the tasks aimed at optimisation of development of steelmaking processes

Teaching methods

Lectures
Seminars
Individual consultations
Tutorials
Project work
Other activities

Summary

In the subject are explicated physico-chemical principle of high-temperature processes proceeding during production, refining and casting of steel. Subject is aimed onto melts of slag and steel and onto interactions proceeding on their phase interface and interface with atmosphere.

Compulsory literature:

[1] Fruehan, R. J.: The Making, Shaping and Treating of Steel, Pittsburgh, USA, 759 p. ISBN: 0-930767-02-0. [2] Stolte, G.: Secondary Metallurgy - Fundamentals, Processes, Aplications. Stahleisen Communications, Germany, 2002, 216 p., ISBN 978-3-514-00648-5.

Recommended literature:

[1] Fruehan, R.J.: The Making, Shaping and Treating of Steel, Pittsbourgh, USA, 759 p. ISBN: 0-930767-02-0. [2] Stolte, G.: Secondary Metallurgy - Fundamentals, Processes, Aplications. Stahleisen Communications, Germany, 2002, 216 p., ISBN 978-3-514-00648-5.

Additional study materials

Way of continuous check of knowledge in the course of semester

Scoring semestral work.

E-learning

Lessons are continuously enriched by ever expanding implementation of e-learning elements.

Other requirements

Monitoring of other sources of information news from the field of metallurgy.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures 1. Equilibria. Equilibrium constant and manners of its expression. Principle of action and reaction. 2. Criteria of processes equilibria (G, K). Reaction isotherm and its importance. 3. Ideal solution – Raoult’s law. Diluted solution – Henry’s law. 4. Thermodynamic activity of a component in solution. Manners of expressing activity of component in solution. 5. Calculation of activity coefficients in poly-component systems. Molten steelmaking slags – molecular theory of slags. 6. Ion theory of slags. Affinity of elements – especially to oxygen. 7. Nernst distribution law. Distribution of oxygen between slag and metal. 8. Reactions running at production and refining of steel: oxidation of Si and Mn, transfer of oxygen from atmosphere into steel bath. Dephosphorisation of steel. 9. Desulphurisation of steel. Solubility of gases in metals; dependence on partial pressure of gas and on temperature. 10. Hydrogen in iron and steel. Nitrogen in iron and steel. 11. Oxygen in iron and steel. Carbon reaction and its importance at production and refining of steel. 12. Influence of temperature and pressure of development of carbon reaction. Vacuum carbon deoxidation of steel. 13. Coagulating deoxidation of steel. Diffusion deoxidation and deoxidation of steel by synthetic slags. 14. Inclusions in steel. Nucleation of inclusion and modification of inclusions.

Conditions for subject completion

Part-time form (validity from: 2008/2009 Summer semester, validity until: 2015/2016 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30 (30) 20
                Other Type of Task Other task type 30  0
        Examination Examination 70 (70) 0 3
                Written Examination Written examination 15  0
                Oral Examination Oral examination 55  0
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2014/2015 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2013/2014 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2012/2013 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2011/2012 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2010/2011 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2009/2010 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2008/2009 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2007/2008 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2006/2007 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2005/2006 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan
2004/2005 (N2109) Metallurgical Engineering (2109T035) Technologies of Metal Production K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2012/2013 Summer
2011/2012 Summer
2009/2010 Summer