618-0933/04 – Využití metod modelování a simulací v metalurgii (VMMaSvM)
Garantující katedra | Katedra metalurgie a slévárenství | Kredity | 10 |
Garant předmětu | prof. Ing. Markéta Tkadlečková, Ph.D. | Garant verze předmětu | prof. Ing. Markéta Tkadlečková, Ph.D. |
Úroveň studia | postgraduální | Povinnost | povinně volitelný typu B |
Ročník | | Semestr | zimní + letní |
| | Jazyk výuky | angličtina |
Rok zavedení | 2019/2020 | Rok zrušení | 2021/2022 |
Určeno pro fakulty | FMT | Určeno pro typy studia | doktorské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
- student bude umět charakterizovat význam, metody a využití metod modelování v technické praxi
- student bude umět formulovat základní zákonitosti fyzikálního a numerického modelování procesů
- student bude umět popsat podobnost dějů, odvozování kritérií podobnosti a aplikaci modelování v metalurgii výroby, zpracování a odlévání oceli
- student bude umět stanovit typ úlohy, určit vhodný řešič a definovat podmínky výpočtu v dostupném software (CFD program ANSYS Fluent / QuikCAST)
- student bude umět vyhodnotit a interpretovat výsledky modelování ve vztahu technologické praxi
Vyučovací metody
Semináře
Individuální konzultace
Anotace
Předmět je zaměřen na prohloubení znalostí získaných z předchozího studia v oblasti teorie a praxe fyzikálního a numerického modelování procesů v metalurgii. Obsahová část předmětu plně reflektuje současný stav poznání a cílí na upevnění teoretických znalostí v oblasti fyzikálního a numerického modelování a zejména pak praktických dovedností v oblasti numerického modelování a simulací metalurgických procesů souvisejících s modelováním proudění tavenin v reaktorech, modelováním rafinačních dějů a procesu tuhnutí kovových materiálů. Při výuce bude využito dostupné laboratorní zařízení a speciální software. Předmět lze studovat v prezenční, i v kombinované formě. Výběr témat může být proveden s přihlédnutím k tématu doktorské disertační práce.
Povinná literatura:
Doporučená literatura:
Další studijní materiály
Forma způsobu ověření studijních výsledků a další požadavky na studenta
Ústní zkouška s písemnou přípravou, součástí hodnocení je předchozí odevzdání projektu na zvolené téma.
E-learning
Další požadavky na studenta
Vypracování projektu.
Prerekvizity
Předmět nemá žádné prerekvizity.
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
Základní pojmy modelování procesů, klasifikace modelů podle různých kritérií. Fyzikální modelování, jeho význam v různých vědních oblastech. Bezrozměrové parametry (kritéria podobnosti), rozdělení a vlastnosti kritérií podobnosti. Přibližné fyzikální modelování. Automodelnost. Fyzikální význam některých kritérií podobnosti, problematika současného dodržení identity Fr a Re kritéria.
Stanovení bezrozměrových parametrů metodou podobnostní transformace základních rovnic. Podobnostní transformace Navier-Stokesových rovnic. Stanovení měřítek objemového průtoku.
Experimentální podstata fyzikálního modelování. Metody stanovení retenčních časů, metoda impuls-odezva, RTD křivky, vizualizace proudění. Zákonitosti výstavby fyzikálních modelů. Základní experimentální postupy při fyzikálním modelování proudění tekutých kovů.
Základy teorie průtokových reaktorů – hypotetické modely proudění, pístový tok, dokonalé promíchávání. Reálný reaktor. Teoretický retenční čas. C křivka, F křivka. Kombinovaný model proudění, střední retenční čas, zkratové proudění, mrtvý objem. Disperzní model proudění.
Teoretické základy matematického modelování přenosových jevů v tekutině. Kinetika přenosu prvku mězi dvěma fázemi. Experimentální studium přenosových procesů a jejich uplatnění v technologické praxi odsíření a odfosfoření. Výběr vhodných matematických modelů pro popis přechodových dějů metalurgických procesů. Empiricko – matematický a fyzikálně (adekvátně) – matematický přístup řešení. Přístupy a metody řešení aproximace a regrese. Parametrická identifikace.
Numerické modelování proudění v průtokových metalurgických reaktorech. Identifikace charakteru proudění. Stacionární a nestacionární podmínky proudění. Modelování turbulentního proudění.
Popis oblasti – geometrie symetrických a asymetrických těles. Volba hustoty a typu výpočetní sítě. Okrajové podmínky. Stanovení parametrů turbulence.
Definice a modifikace materiálových vlastností. Použití definice fyzikálních vlastností jako teplotně závislé funkce. Termická analýza – stanovení tepelné kapacity kovových systémů. Stanovení viskozity materiálu.
Diskretizační schémata. Podrelaxační faktory. Kritéria konvergence úlohy.
Modelování procesů tuhnutí kovových systémů. Rovnice vedení tepla. Přirozená konvekce taveniny během fázové změny. Řešení vedení tepla spojeného s fázovou transformací pomocí metody konečných diferencí, konečných objemů a konečných prvků.
Mikrosegregační modely. Makrosegregační modely. Modely predikce porosity. Niyamovo kritérium.
Definice okrajových podmínek simulace procesu tuhnutí. Identifikace modelované oblasti. Výpočet a volba koeficientů přestupu tepla. Stanovení materiálových vlastností modelovaného systému – identifikace teplot fázových změn, entalpie vs. tepelná kapacita, závislost termodynamických vlastností na teplotě.
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky
Předmět neobsahuje žádné hodnocení.