618-3007/01 – Modelling and Vizualization of Metallurgical Processes (MaVMP)

Gurantor departmentDepartment of Metallurgy and FoundryCredits6
Subject guarantorprof. Ing. Karel Michalek, CSc.Subject version guarantorprof. Ing. Karel Michalek, CSc.
Study levelundergraduate or graduateRequirementChoice-compulsory
Year2Semesterwinter
Study languageCzech
Year of introduction2014/2015Year of cancellation2020/2021
Intended for the facultiesFMTIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
MAZ0047 Ing. Patrik Mazur
MIH50 prof. Ing. Karel Michalek, CSc.
SVI0019 Ing. Jana Sviželová
SAW002 prof. Ing. Markéta Tkadlečková, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+3
Part-time Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

Acquired knowledge - student will be able to formulate basic regularities of physical and numerical process modelling, - student will be able to describe similarity of processes, derivation of similarity criterion and modelling application in metallurgy of steel production, treatment and casting, - student will be able to characterise importance, methods and utilisation of modelling methods in technical practice, Acquired skills -student will be able to use his knowledge for derivation of similarity criteria and for proposal of physical modelling methods not only in metallurgy -student will be able to use fundamentals of 3D modelling of geometry and numerical modelling in CFD programme FLUENT.

Teaching methods

Lectures
Individual consultations
Tutorials

Summary

The subject is focused on general methods of process modelling, as mathematical methods, so physical methods of modelling. The subject is focused on principle of process algorithm and their visualisation with particular applications directed to the domain of steel making, secondary metallurgy and steel casting.

Compulsory literature:

[1] ILEGBUSI, O., J., IGUCHI, M., WAHNSIEDLER, W.: Mathematical and Physical modeling of Materials Processing Operation. 2000. ISBN 1-58488_017_1.

Recommended literature:

[1] COCKCROFT, S.L., MAIJER, D.M.M.: Modeling of Casting, Welding, and Advanced Solidification Processes XII. Vancouver, British Columbia, 2009, 728 p. ISBN 978-0-87339-742-1. [2] MAZUMDAR, D., EVANS, J., W.: Modeling of Steelmaking Processes. CRC Press, 1 edition, 2009. 493 pages. ISBN-13: 978-1420062434

Way of continuous check of knowledge in the course of semester

E-learning

http://www.fmmi.vsb.cz/cs/urceno-pro/studenty/podklady-ke-studiu/studijni-opory

Other requirements

preparing two seminar works from the area of metallurgical processes modelling

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject codeAbbreviationTitle
618-3005 SekMet Secondary Metallurgy

Subject syllabus:

1.Basic terms of process modelling, classification of models according to different criteria. Physical modelling and its importance in various fields of science. System Similarity, the similarity constants. 2.Dimensionless parameters (similarity criteria), the distribution and properties of similarity criteria. A complete physical equations, the basic equations, the criteria equations. Determination of dimensionless parameters using dimensional analysis. 3.Determination of dimensionless parameters using method of similarity transformation of the basic equations. Similarity transformation of the Navier-Stokes equations. 4.Approximate physical modelling. Automodelling. Physical meaning of some similarity criteria, the issue of respecting of the identity of Fr and Re criteria. Determination of volumetric flow scales. 5.The experimental nature of physical modelling. Methods for determination of retention times, the impulse-response method, the RTD curves, flow visualization. 6.The principles of construction of physical models. Basic experimental techniques in physical modelling of flow of liquid metals. 7.Fundamentals of flow reactors - hypothetical models of flow, plug flow, perfect mixing. Real reactor. Theoretical retention time. Curve C, curve F. A combined flow model, mean retention time, short-flow, dead volume. Dispersion flow model. 8.The selection of suitable mathematical models to describe transient metallurgical processes. Empirical - mathematical and physical (adequate) - mathematical approach a solution. 9.Theoretical foundations of the mathematical description of the transient processes. Approaches and methods for solving of approximation and regression. Parametric identification. 10.The method of planned experiment - DOE. Basic terms, objectives, utilization of planned experiment. Develop a plan of the experiment. Calculation of the effects of factors and interactions. Development of the model experiment. Software support of DOE methodology. Practical use of DOE methods. 11.Static and dynamic model of heat management in the oxygen converter. Basic management level, superior management level. The essence of a dynamic model of management, monitoring of the heat, the relevant data to manage the heat, the methods of measurement. The main features of calculating the charge for heat in oxygen converter. Innovation of melting process. 12.Theoretical principles of mathematical modelling of fluid flow phenomena. Flow of real fluids. Laminar and turbulent flow. Navier-Stokes equations and continuity equation. 13.CFD software systems. The procedure of numerical simulation in CFD programme ANSYS FLUENT. Preprocessing - geometry creation and generation of computational mesh, the definition of a physical model, the choice of turbulence model, setting of the operational conditions, determination of material properties and boundary conditions. 14.ANSYS FLUENT: Processing - Solving: the actual implementation of the calculation (stationary, nonstationary), convergence of the solution. Postprocessing - evaluation of results. Examples of using CFD programmes in practice.

Conditions for subject completion

Part-time form (validity from: 2014/2015 Winter semester, validity until: 2020/2021 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30  20
        Examination Examination 70  21 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2020/2021 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2019/2020 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2019/2020 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2018/2019 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2018/2019 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2017/2018 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2017/2018 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2016/2017 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2016/2017 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2015/2016 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2015/2016 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan
2014/2015 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies P Czech Ostrava 2 Choice-compulsory study plan
2014/2015 (N2109) Metallurgical Engineering (2109T038) Modern Metallurgical Technologies K Czech Ostrava 2 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
FMMI 2015/2016 Full-time English Compulsory 601 - Study Office stu. block
FMMI_N 2014/2015 Full-time Czech Compulsory 601 - Study Office stu. block

Assessment of instruction



2019/2020 Winter
2018/2019 Winter
2017/2018 Winter
2015/2016 Winter