619-0804/01 – Process Modelling (MP)
Gurantor department | Department of Physical Chemistry and Theory of Technological Processes | Credits | 5 |
Subject guarantor | prof. Ing. Jana Dobrovská, CSc. | Subject version guarantor | prof. Ing. Jana Dobrovská, CSc. |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | summer |
| | Study language | Czech |
Year of introduction | 2005/2006 | Year of cancellation | 2014/2015 |
Intended for the faculties | FMT | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
- to outline basic theoretical and practical methods of process modelling
- to define and classify mathematical, statistical and analytical models
- to outline fundamentals of mathematical and physical modelling
- to describe and analyse models of chemical reactors - ideal and real chemical
reactors, plug flow reactors, stirred flow reactors,
- to apply gained theoretical knowledge in the domain of process engineering
Teaching methods
Lectures
Tutorials
Other activities
Summary
The subject is focused on comprehension of basic theoretical and practical
methods of process modelling, both mathematical and physical methods of
modelling. The subject is also focused on principle of process algorithm with
particular applications directed to the domain of process engineering.
Compulsory literature:
Lipson Ch. – Narenda, J. S.: Statistical Design and Analysis of Engineering
Experiments. McGraw-Hill, Inc., 1973.
Recommended literature:
[1] Uživatelské příručky MS Word, MS Excel
[2] časopisy: Ironmaking & Steelmaking, Steel Research International, Hutnické listy
[3] Články v odborném tisku, příspěvky na konferencích, výzkumné zprávy, závěrečné práce.
[4] Mazumdar, D., Evans, J., W.: Modeling of Steelmaking Processes. CRC Press, 1 edition, 2009. 493
pages. ISBN-13: 978-1420062434
[5] Ghosh, A., Chatterjee, A.: Ironmaking and Steelmaking. Prentice-Hall of India Pvt.Ltd, 2008. 472
pages. ISBN-13 978-8120332898
[6] Lee, H.-H.: Finite Element Simulations with ANSYS Workbench 13. SDC Publications, Pap/DVD
editions, 2011. 608 pages. ISBN-13: 978-1585036530
Way of continuous check of knowledge in the course of semester
Podmínky pro udělení zápočtu:
- 100 % účast na cvičení – 4 body
- 93 % účast na cvičení (1 omluvená neúčast) – 2 body
- účast na cvičení menší než 79% ( 4 neúčasti a více)) poskytuje možnost
neudělení zápočtu
- zpracování, odevzdání a obhájení 3 teoretických programů zadaných
vedoucím cvičení – hodnocení (12 + 12+ 12) = max.36 bodů
Bodové hodnocení zápočtu:
- zápočet min. bodů 20
- zápočet max. bodů 40
V celkovém zisku bodového ohodnocení zápočtu musí být obsaženo nenulové hodnocení všech 3 teoretických programů, tzn. student musí odevzdat všechny teoretické programy.
Bodové hodnocení zkoušky: zkouška kombinovaná
- praktická část zkoušky - max. 30 bodů
- ústní část zkoušky - max. 30 bodů
Zkouška se skládá z praktické části, což představuje vyřešení daného úkolu aplikací PC, a teoretické (ústní) části.
V celkovém zisku bodového ohodnocení zkoušky musí být obsaženo jak nenulové hodnocení praktické části zkoušky, tak nenulové hodnocení vlastní ústní zkoušky, tzn. student musí absolvovat obě části zkoušky.
Bodové hodnocení předmětu se získá součtem bodů za cvičení a za absolvování zkoušky. Výsledná klasifikace je dána podmínkami ve Studijním a zkušebním řádu VŠB TUO.
E-learning
V současnosti jsou k dispozici studijní opory z části zajišťované katedrou metalurgie a slévárenství v českém jazyce: http://www.fmmi.vsb.cz/cs/okruhy/studium-a-vyuka/podklady-ke-studiu
Other requirements
.....................
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Basic terms: system and its properties, structure and target behaviour; devices, processes, operations,
physical or chemical phenomena. Introduction to mathematical modelling: model, modelling,
mathematical modelling.
2. Classification of mathematical models, deterministic and stochastic models, empirical (statistical)
models and models derived on the base of natural relations (analytical models). Methods of
mathematical models obtaining. Mathematical structure of equations in mathematical models.
3. Statistical models. Regression calculation – evaluation of experimental data. Basic terms: least
squares method, standard error of estimation, coefficient of determination, standard error of coefficients,
ANOVA, t-test. Models of linear and non-linear regression. Multiple regression.
4. Analytical models. Phenomenological approach to mathematical modelling of processes – model
based on theory of transport phenomena.
5. Application of mathematical modelling: mathematical modelling of kinetics of subsequent chemical
reactions – theoretical background.
6. Application of mathematical modelling: mathematical modelling of diffusion processes in crystallize
materials (metallic alloys) – theoretical background.
7. Theoretical principles of mathematical modelling of fluid flow phenomena. Flow of real fluids. Laminar
and turbulent flow. Navier-Stokes equations and continuity equation. Mathematical models of
turbulence. Computational mesh. Discretization technique.
8. CFD software systems. The procedure of numerical simulation in CFD programme ANSYS FLUENT.
Preprocessing – geometry creation and generation of computational mesh, the definition of a physical
model, the choice of turbulence model, setting of the operational conditions, determination of material
properties and boundary conditions. Processing - Solving: the actual implementation of the calculation
(stationary, nonstationary), convergence of the solution. Postprocessing - evaluation of results.
Examples of using CFD programmes in practice.
9. Basic terms of process modelling, classification of models according to different criteria. Physical
modelling and its importance in various fields of science. System Similarity, the similarity constants.
The geometric, kinematic and dynamic similarity. Dynamic similarity of hydrodynamic systems. Basic
types of forces in hydrodynamics. Thermal similarity.
10. A complete physical equations, the basic equations, the criterial equations. Determination of
dimensionless parameters using dimensional analysis, practical examples of using of dimensional
analysis.
11. Determination of dimensionless parameters using method of similarity transformation of the basic
equations. Indicators of similarity. Similarity transformation of differential equations of the flow of real
viscous fluids. Comparison of both methods for determination of the similarity criteria. Approximate
physical modelling. Automodelling. Physical meaning of some similarity criteria.
12. Fundamentals of flow reactors - hypothetical models of flow, plug flow, perfect mixing. Real reactor.
Theoretical retention time. Curve C, curve F. A combined flow model, mean retention time, short-flow,
dead volume. Dispersion flow model.
13. Methods for determination of retention times, the impulse-response method, the RTD curves, flow
visualization. The principles of construction of physical models. Basic experimental techniques in
physical modelling of flow of liquid metals. Selected electronic information resources in the area of
mathematical and physical modelling.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction
Předmět neobsahuje žádné hodnocení.