619-0804/01 – Process Modelling (MP)

Gurantor departmentDepartment of Physical Chemistry and Theory of Technological ProcessesCredits5
Subject guarantorprof. Ing. Jana Dobrovská, CSc.Subject version guarantorprof. Ing. Jana Dobrovská, CSc.
Study levelundergraduate or graduateRequirementChoice-compulsory
Year1Semestersummer
Study languageCzech
Year of introduction2005/2006Year of cancellation2014/2015
Intended for the facultiesFMTIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
DOB30 prof. Ing. Jana Dobrovská, CSc.
GRY04 doc. Ing. Karel Gryc, Ph.D.
MIH50 prof. Ing. Karel Michalek, CSc.
SME06 doc. Ing. Bedřich Smetana, Ph.D.
SAW002 doc. Ing. Markéta Tkadlečková, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

- to outline basic theoretical and practical methods of process modelling - to define and classify mathematical, statistical and analytical models - to outline fundamentals of mathematical and physical modelling - to describe and analyse models of chemical reactors - ideal and real chemical reactors, plug flow reactors, stirred flow reactors, - to apply gained theoretical knowledge in the domain of process engineering

Teaching methods

Lectures
Tutorials
Other activities

Summary

The subject is focused on comprehension of basic theoretical and practical methods of process modelling, both mathematical and physical methods of modelling. The subject is also focused on principle of process algorithm with particular applications directed to the domain of process engineering.

Compulsory literature:

Lipson Ch. – Narenda, J. S.: Statistical Design and Analysis of Engineering Experiments. McGraw-Hill, Inc., 1973.

Recommended literature:

[1] Uživatelské příručky MS Word, MS Excel [2] časopisy: Ironmaking & Steelmaking, Steel Research International, Hutnické listy [3] Články v odborném tisku, příspěvky na konferencích, výzkumné zprávy, závěrečné práce. [4] Mazumdar, D., Evans, J., W.: Modeling of Steelmaking Processes. CRC Press, 1 edition, 2009. 493 pages. ISBN-13: 978-1420062434 [5] Ghosh, A., Chatterjee, A.: Ironmaking and Steelmaking. Prentice-Hall of India Pvt.Ltd, 2008. 472 pages. ISBN-13 978-8120332898 [6] Lee, H.-H.: Finite Element Simulations with ANSYS Workbench 13. SDC Publications, Pap/DVD editions, 2011. 608 pages. ISBN-13: 978-1585036530

Way of continuous check of knowledge in the course of semester

Podmínky pro udělení zápočtu: - 100 % účast na cvičení – 4 body - 93 % účast na cvičení (1 omluvená neúčast) – 2 body - účast na cvičení menší než 79% ( 4 neúčasti a více)) poskytuje možnost neudělení zápočtu - zpracování, odevzdání a obhájení 3 teoretických programů zadaných vedoucím cvičení – hodnocení (12 + 12+ 12) = max.36 bodů Bodové hodnocení zápočtu: - zápočet min. bodů 20 - zápočet max. bodů 40 V celkovém zisku bodového ohodnocení zápočtu musí být obsaženo nenulové hodnocení všech 3 teoretických programů, tzn. student musí odevzdat všechny teoretické programy. Bodové hodnocení zkoušky: zkouška kombinovaná - praktická část zkoušky - max. 30 bodů - ústní část zkoušky - max. 30 bodů Zkouška se skládá z praktické části, což představuje vyřešení daného úkolu aplikací PC, a teoretické (ústní) části. V celkovém zisku bodového ohodnocení zkoušky musí být obsaženo jak nenulové hodnocení praktické části zkoušky, tak nenulové hodnocení vlastní ústní zkoušky, tzn. student musí absolvovat obě části zkoušky. Bodové hodnocení předmětu se získá součtem bodů za cvičení a za absolvování zkoušky. Výsledná klasifikace je dána podmínkami ve Studijním a zkušebním řádu VŠB TUO.

E-learning

V současnosti jsou k dispozici studijní opory z části zajišťované katedrou metalurgie a slévárenství v českém jazyce: http://www.fmmi.vsb.cz/cs/okruhy/studium-a-vyuka/podklady-ke-studiu

Další požadavky na studenta

.....................

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Basic terms: system and its properties, structure and target behaviour; devices, processes, operations, physical or chemical phenomena. Introduction to mathematical modelling: model, modelling, mathematical modelling. 2. Classification of mathematical models, deterministic and stochastic models, empirical (statistical) models and models derived on the base of natural relations (analytical models). Methods of mathematical models obtaining. Mathematical structure of equations in mathematical models. 3. Statistical models. Regression calculation – evaluation of experimental data. Basic terms: least squares method, standard error of estimation, coefficient of determination, standard error of coefficients, ANOVA, t-test. Models of linear and non-linear regression. Multiple regression. 4. Analytical models. Phenomenological approach to mathematical modelling of processes – model based on theory of transport phenomena. 5. Application of mathematical modelling: mathematical modelling of kinetics of subsequent chemical reactions – theoretical background. 6. Application of mathematical modelling: mathematical modelling of diffusion processes in crystallize materials (metallic alloys) – theoretical background. 7. Theoretical principles of mathematical modelling of fluid flow phenomena. Flow of real fluids. Laminar and turbulent flow. Navier-Stokes equations and continuity equation. Mathematical models of turbulence. Computational mesh. Discretization technique. 8. CFD software systems. The procedure of numerical simulation in CFD programme ANSYS FLUENT. Preprocessing – geometry creation and generation of computational mesh, the definition of a physical model, the choice of turbulence model, setting of the operational conditions, determination of material properties and boundary conditions. Processing - Solving: the actual implementation of the calculation (stationary, nonstationary), convergence of the solution. Postprocessing - evaluation of results. Examples of using CFD programmes in practice. 9. Basic terms of process modelling, classification of models according to different criteria. Physical modelling and its importance in various fields of science. System Similarity, the similarity constants. The geometric, kinematic and dynamic similarity. Dynamic similarity of hydrodynamic systems. Basic types of forces in hydrodynamics. Thermal similarity. 10. A complete physical equations, the basic equations, the criterial equations. Determination of dimensionless parameters using dimensional analysis, practical examples of using of dimensional analysis. 11. Determination of dimensionless parameters using method of similarity transformation of the basic equations. Indicators of similarity. Similarity transformation of differential equations of the flow of real viscous fluids. Comparison of both methods for determination of the similarity criteria. Approximate physical modelling. Automodelling. Physical meaning of some similarity criteria. 12. Fundamentals of flow reactors - hypothetical models of flow, plug flow, perfect mixing. Real reactor. Theoretical retention time. Curve C, curve F. A combined flow model, mean retention time, short-flow, dead volume. Dispersion flow model. 13. Methods for determination of retention times, the impulse-response method, the RTD curves, flow visualization. The principles of construction of physical models. Basic experimental techniques in physical modelling of flow of liquid metals. Selected electronic information resources in the area of mathematical and physical modelling.

Conditions for subject completion

Full-time form (validity from: 2012/2013 Winter semester, validity until: 2014/2015 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 40 (40) 20
                Project Project 36  0
                Other task type Other task type 4  0
        Examination Examination 60 (60) 15
                Written examination Written examination 30  0
                Oral Oral examination 30  0
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2014/2015 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2014/2015 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2013/2014 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2013/2014 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2012/2013 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2012/2013 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2011/2012 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2011/2012 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2010/2011 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2010/2011 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2009/2010 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2009/2010 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2008/2009 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2008/2009 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2007/2008 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2007/2008 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2006/2007 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2006/2007 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan
2005/2006 (N3909) Process Engineering (2807T004) Chemical Engineering P Czech Ostrava 1 Compulsory study plan
2005/2006 (N3909) Process Engineering (3911T008) Chemical and Physical Methods of Material Testing P Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
FMMI 2012/2013 Full-time Czech Compulsory 601 - Study Office stu. block
FMMI_ECTS 2011/2012 Full-time Czech Compulsory 600 - Faculty of Materials Science and Technology - Dean's Office stu. block