619-0809/06 – Physical Chemistry and Kinetics of Explosions (FCHKE)
Gurantor department | Department of Physical Chemistry and Theory of Technological Processes | Credits | 5 |
Subject guarantor | prof. Ing. Jana Dobrovská, CSc. | Subject version guarantor | prof. Ing. Jana Dobrovská, CSc. |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | winter |
| | Study language | Czech |
Year of introduction | 2009/2010 | Year of cancellation | |
Intended for the faculties | FBI | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
- to define the thermodynamic quantities and thermodynamic laws
- to describe the chemical equilibrium – to monitor the dependence of the equilibrium
constant on state variables (dependence on temperature, dependence on pressure) –
to utilize Le Chatelier’s principle (effect of initial composition, pressure and inert
component on the equilibrium composition)
- to describe the phase equilibrium - Gibbs phase rule, phase equilibria of pure
substances and liquid-vapour equilibrium in mixtures
- to define and apply basic principles of chemical kinetics - rate of chemical reaction,
kinetic equation, order of reaction, rate constant, the theory of reaction rates
- to describe basic steps of heterogeneous process - physical processes limiting
kinetics of heterogeneous processes, diffusion, the Fick's first and second law,
adsorption, adsorption isotherms
- to apply the chemical thermodynamics a kinetics on the processes of combustion,
explosion and extinguishing
Teaching methods
Lectures
Individual consultations
Tutorials
Summary
Application of the physico-chemical laws on the processes of combustion,
explosion and extiguishing.
Compulsory literature:
Atkins,P.W., Physical Chemistry. Fourth Edition, Oxford: Oxford University
Press, 1993. 995 p.
Warnatz,J., Maas,U., Dibble,R.W., Combustion. Physical and Chemical
Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation.
Springer-Verlag Berlin Heidelberg New Uork. 1996. 265 p.
Recommended literature:
Warren Strahle C., An Introduction to Combustion. Gordon and Breach Science
Publishers. Combustion Science and Technology Book Series.Volume 1. 1993. 166p.
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
No other activities are required.
Prerequisities
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Gases, ideal gas, equation of state of an ideal gas, special cases, real gases, Van der Waals equation of state, Abel equation.
Heat capacities of substances – definition, variation of heat capacities with temperature, difference in the molar heat capacities between the products and reactants.
The First law of thermodynamics, definition, signification, constant pressure heat, constant volume heat, enthalpy. Heating and cooling of substances.
Heats of reaction. Thermochemistry laws, theoretical calculation of reaction heats. Heats of combustion. Heat of explosion.
Variation of the reaction heat with temperature - Kirchhoff’s equations and their utilization. Adiabatic reaction temperature.
The second law of thermodynamics, entropy. Thermodynamic potentials – Helmholtz and Gibbs free energy, significance and application.
Chemical equilibriums, types of equilibrium constants for homogeneous nad heterogeneous chemical reactions. Van´t Hoff reaction isotherm. Degree of conversion. Effect of temperature on chemical equilibrium.
Phase equilibrium. Evaporation of pure liquid. Clausius-Clapeyron equation.
Solutions, Raoult’s law.
Chemical kinetics, basic terms - rate of chemical reaction, law of mass action, (Guldberg-Waage law), molecularity, order of reaction, reaction mechanism.
Kinetics of first-order reactions, reaction half-life.
Temperature and pressure dependence of the rate of a chemical reaction. Effect of concentration on reaction rates.
Kinetics of heterogeneous chemical reactions - elementary reaction steps in heterogenous process, diffusion, laws of diffusion.
Adsorption, adsorption of gases on solid surfaces, Freundlich adsorption isotherm.
Mechanism of burning reaction, theory of chain reactions, theory of thermal spontaneous ignition.
Ignition limit, first, second and third pressure ignition limit.
Heterogeneous and homogeneous combustion. Kinetic and diffusion combustion.
Adiabatic (theoretical) flame temperature.
Combustible composition and burning products. Specific combustion heat and specific caloric power.
Combustion of fuels. Amount of oxygen and air for combustion. Mechanism of explosive transformations.
Explosive hazards. Theory of extinguishing.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction