619-0809/06 – Physical Chemistry and Kinetics of Explosions (FCHKE)

Gurantor departmentDepartment of Physical Chemistry and Theory of Technological ProcessesCredits5
Subject guarantorprof. Ing. Jana Dobrovská, CSc.Subject version guarantorprof. Ing. Jana Dobrovská, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2009/2010Year of cancellation2021/2022
Intended for the facultiesFBIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
DOB30 prof. Ing. Jana Dobrovská, CSc.
R1E37 doc. Ing. Lenka Řeháčková, Ph.D.
SME06 prof. Ing. Bedřich Smetana, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Examination 14+0

Subject aims expressed by acquired skills and competences

- to define the thermodynamic quantities and thermodynamic laws - to describe the chemical equilibrium – to monitor the dependence of the equilibrium constant on state variables (dependence on temperature, dependence on pressure) – to utilize Le Chatelier’s principle (effect of initial composition, pressure and inert component on the equilibrium composition) - to describe the phase equilibrium - Gibbs phase rule, phase equilibria of pure substances and liquid-vapour equilibrium in mixtures - to define and apply basic principles of chemical kinetics - rate of chemical reaction, kinetic equation, order of reaction, rate constant, the theory of reaction rates - to describe basic steps of heterogeneous process - physical processes limiting kinetics of heterogeneous processes, diffusion, the Fick's first and second law, adsorption, adsorption isotherms - to apply the chemical thermodynamics a kinetics on the processes of combustion, explosion and extinguishing

Teaching methods

Lectures
Individual consultations
Tutorials

Summary

Application of the physico-chemical laws on the processes of combustion, explosion and extiguishing.

Compulsory literature:

Atkins,P.W., Physical Chemistry. Fourth Edition, Oxford: Oxford University Press, 1993. 995 p. Warnatz,J., Maas,U., Dibble,R.W., Combustion. Physical and Chemical Fundamentals, Modelling and Simulation, Experiments, Pollutant Formation. Springer-Verlag Berlin Heidelberg New Uork. 1996. 265 p.

Recommended literature:

Warren Strahle C., An Introduction to Combustion. Gordon and Breach Science Publishers. Combustion Science and Technology Book Series.Volume 1. 1993. 166p.

Additional study materials

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

No other activities are required.

Prerequisities

Subject codeAbbreviationTitleRequirement
619-0403 ZFCHH Physical Chemistry Fundamentals of Combustion and Explosion Processes Recommended

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Gases, ideal gas, equation of state of an ideal gas, special cases, real gases, Van der Waals equation of state, Abel equation. Heat capacities of substances – definition, variation of heat capacities with temperature, difference in the molar heat capacities between the products and reactants. The First law of thermodynamics, definition, signification, constant pressure heat, constant volume heat, enthalpy. Heating and cooling of substances. Heats of reaction. Thermochemistry laws, theoretical calculation of reaction heats. Heats of combustion. Heat of explosion. Variation of the reaction heat with temperature - Kirchhoff’s equations and their utilization. Adiabatic reaction temperature. The second law of thermodynamics, entropy. Thermodynamic potentials – Helmholtz and Gibbs free energy, significance and application. Chemical equilibriums, types of equilibrium constants for homogeneous nad heterogeneous chemical reactions. Van´t Hoff reaction isotherm. Degree of conversion. Effect of temperature on chemical equilibrium. Phase equilibrium. Evaporation of pure liquid. Clausius-Clapeyron equation. Solutions, Raoult’s law. Chemical kinetics, basic terms - rate of chemical reaction, law of mass action, (Guldberg-Waage law), molecularity, order of reaction, reaction mechanism. Kinetics of first-order reactions, reaction half-life. Temperature and pressure dependence of the rate of a chemical reaction. Effect of concentration on reaction rates. Kinetics of heterogeneous chemical reactions - elementary reaction steps in heterogenous process, diffusion, laws of diffusion. Adsorption, adsorption of gases on solid surfaces, Freundlich adsorption isotherm. Mechanism of burning reaction, theory of chain reactions, theory of thermal spontaneous ignition. Ignition limit, first, second and third pressure ignition limit. Heterogeneous and homogeneous combustion. Kinetic and diffusion combustion. Adiabatic (theoretical) flame temperature. Combustible composition and burning products. Specific combustion heat and specific caloric power. Combustion of fuels. Amount of oxygen and air for combustion. Mechanism of explosive transformations. Explosive hazards. Theory of extinguishing.

Conditions for subject completion

Part-time form (validity from: 2009/2010 Winter semester, validity until: 2021/2022 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Examination Examination 100  51 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2018/2019 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2017/2018 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2016/2017 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2015/2016 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2014/2015 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2013/2014 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2012/2013 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2011/2012 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2010/2011 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2009/2010 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2019/2020 Winter
2017/2018 Winter
2016/2017 Winter
2015/2016 Winter
2009/2010 Winter