619-3009/01 – Reaktorové inženýrství (RI)
Garantující katedra | Katedra fyzikální chemie a teorie technologických procesů | Kredity | 7 |
Garant předmětu | prof. Ing. Lucie Obalová, Ph.D. | Garant verze předmětu | prof. Ing. Lucie Obalová, Ph.D. |
Úroveň studia | pregraduální nebo graduální | Povinnost | povinně volitelný |
Ročník | 2 | Semestr | zimní |
| | Jazyk výuky | čeština |
Rok zavedení | 2015/2016 | Rok zrušení | 2021/2022 |
Určeno pro fakulty | FMT | Určeno pro typy studia | navazující magisterské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
Cílem předmětu je aplikace poznatků z chemické kinetiky, termodynamiky a hydrodynamiky, nauky o sdílení tepla a hmoty při navrhování a simulaci chemických reaktorů.
Vyučovací metody
Přednášky
Individuální konzultace
Cvičení (v učebně)
Projekt
Anotace
Předmět Reaktorové inženýrství se zabírá problematikou kinetiky chemických reakcí v homogenních soustavách (kapalných a plynných), metodikou získávání a vyhodnocování kinetických údajů, základními modelovými představami izotermních a neizotermních chemických reaktorů, jejich návrhem a simulací, heterogenními reaktory a základními představami o neidealitách toku a jejich detekci.
Povinná literatura:
Doporučená literatura:
Další studijní materiály
Forma způsobu ověření studijních výsledků a další požadavky na studenta
E-learning
Další požadavky na studenta
Další požadavky nejsou definovány.
Prerekvizity
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
1. Termodynamika chemických reakcí. Tepelný efekt chemické reakce. Gibbsova energie a termodynamická schůdnost. Rovnováha při chemické reakci. Reakční izoterma a izobara. Rovnovážný stupeň přeměny.
2. Homogenní reakce. Reakce elementární, jednoduché a složené. Definice reakční rychlosti, rychlosti vzniku složky. Definice stupně přeměny. Arrheniova rovnice. Selektivita. Výtěžek.
3. Obecná látková a energetická bilance chemického reaktoru. Stechiometrie.
4. Vsádkový ideálně míchaný reaktor. Popis, příklady použití. Látková a entalpická bilance. Reaktor s proměnným objemem a tlakem. Konstrukční řešení a řízení reaktoru.
5. Ideálně míchaný průtočný reaktor. Popis, příklady použití. Látková a entalpická bilance. Prostorový čas, prostorová rychlost. Konstrukční řešení a řízení reaktoru. Stabilita režimu míchaného průtočného reaktoru. Vícenásobné ustálené stavy. Nájezd reaktoru. Kaskáda míchaných průtočných reaktorů.
6. Reaktor s pístovým tokem. Popis, příklady použití. Látková a entalpická bilance. Konstrukční řešení a řízení reaktoru. Porovnání objemu míchaného průtočného a trubkového reaktoru.
7. Izotermní, neizotermní a adiabatické reaktory. Optimální pracovní teplota. Konstrukční řešení.
8. Výzkum kinetiky chemických reakcí. Makrokinetické a mikrokinetické vlastnosti. Zásady návrhu laboratorního reaktoru. Princip přenosu dat. Zvětšování měřítka.
9. Metody zpracování kinetických dat. Lineární regrese, nelineární regrese.
10. Reálný tok. Metody diagnostiky hydrodynamiky toku v reálných reaktorech. Distribuce doby prodlení. Modely toku pro reálné reaktory, axiální disperze, kaskáda ideálních mísičů, mrtvý prostor, zkrat, segregační model.
11. Kinetika heterogenních reakcí. Příklady vícefázových reaktorů: reaktory kapalina – plyn, reaktory plyn – kapalina – tuhá fáze.
12. Heterogenní katalytické reaktory. Katalyzátor a děje probíhající v částici katalyzátoru. Kinetické rovnice pro katalytické reakce. Modely heterogenních katalytických reaktorů. Thieleho modul. Efektivní faktor. Tlaková ztráta v sypaném loži.
13. Exkurze do chemického podniku.
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky