635-2035/01 – Alternativní energetické zdroje (AEZ)
Garantující katedra | Katedra tepelné techniky | Kredity | 6 |
Garant předmětu | doc. Ing. Marek Velička, Ph.D. | Garant verze předmětu | doc. Ing. Marek Velička, Ph.D. |
Úroveň studia | pregraduální nebo graduální | Povinnost | povinný |
Ročník | 2 | Semestr | letní |
| | Jazyk výuky | čeština |
Rok zavedení | 2019/2020 | Rok zrušení | |
Určeno pro fakulty | FMT | Určeno pro typy studia | bakalářské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
Student bude umět:
- spočítat optimální orientaci a výkon slunečního kolektoru a fotovoltaického článku
- spočítat výkon větrného a vodního motoru
- zhodnotit jednotlivé obnovitelné zdroje energie
- porovnat typy palivových článků
- porovnat různé možnosti akumulace energie
Vyučovací metody
Přednášky
Cvičení (v učebně)
Anotace
Sluneční energie – základní parametry slunečního záření, určování polohy Slunce. Sluneční kolektory, fotovoltaické články. Větrná energie – výkon větrného motoru, větrné elektrárny. Energie vodních toků a oceánů. Energie biomasy – termické, biotechnologické a chemické procesy. Nízkoteplotní a vysokoteplotní geotermální energie. Tepelná čerpadla. Jaderná energie. Vodíkové technologie. Palivové články. Akumulace energie.
Povinná literatura:
Doporučená literatura:
Další studijní materiály
Forma způsobu ověření studijních výsledků a další požadavky na studenta
Písemný test a ústní zkouška.
E-learning
Další požadavky na studenta
Základní znalosti z matematiky, fyziky a chemie.
Prerekvizity
Předmět nemá žádné prerekvizity.
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
• Sluneční energie. Spektrum slunečního záření. Solární konstanta. Určování polohy Slunce. Hustota energetického slunečního toku (přímé, difúzní záření). Energie na osluněnou plochu.
• Sluneční kolektory - ploché, vakuové, koncentrační. Energie zachycená kolektorem, účinnost kolektoru.
• Fotovoltaická přeměna. Šířka zakázaného pásu. Fotovoltaické články - typy, výkon, účinnost, zapojení. Fotovoltaické elektrárny.
• Větrná energie: Parametry a vertikální profil větru. Kinetická energie a výkon větru. Betzův zákon. Výkon větrného motoru, rychloběžné číslo. Větrné elektrárny - rotory, převodovky, generátory, systém natáčení strojovny, stožár, regulační systém. Potenciál energie větru v ČR.
• Energie vodních toků. Měrná energie a výkon vodního motoru. Hlavní druhy vodních turbín. Vodní energetika v ČR a ve světě. Energie moří. - mořské vlny, příliv, odliv, mořské proudy, teplotní gradient mezi rozdílnými hloubkami, osmotické procesy, tepelná energie aj.
• Energie biomasy. Biomasa pro energetické účely - záměrně pěstovaná, odpadní. EROEI. Způsoby získávání energie z biomasy. Termické procesy - spalování, zplyňování, pyrolýza. Biotechnologické procesy - anaerobní digesce a etanolová fermentace. Chemické procesy - esterifikace bioolejů.
• Geotermální energie. Geotermický gradient, geotermický stupeň. Geotermální zdroje. Geotermální elektrárny.
• Tepelná čerpadla. Princip TČ, topný faktor. Pracovní látky - ekologické hledisko. Druhy TČ: vzduch - vzduch, vzduch - voda, voda - voda, půda - voda. Ekologické hledisko při aplikaci tepelných čerpadel.
• Jaderná energie. Energie z jaderné reakce. Způsoby řízení řetězové reakce. Jaderný reaktor. Jaderné elektrárny. Termojaderná fúze.
• Vodíkové technologie. Výroba vodíku z fosilních paliv, elektrolýzou vody.
• Palivové články. Princip, typy - A, PEM, PA, MC, SO. Vývoj a aplikace FC.
• Akumulace energie - elektromechanická, tepelná, chemická.
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky