636-0402/02 – Structure and Properties of Solids (SaVPL)

Gurantor departmentDepartment of Material EngineeringCredits5
Subject guarantorprof. Ing. Vlastimil Vodárek, CSc.Subject version guarantorprof. Ing. Vlastimil Vodárek, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year2Semesterwinter
Study languageCzech
Year of introduction2005/2006Year of cancellation2019/2020
Intended for the facultiesHGF, FMTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
FIL40 Ing. František Filuš
VOD37 prof. Ing. Vlastimil Vodárek, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+3
Part-time Credit and Examination 14+4

Subject aims expressed by acquired skills and competences

- Outline structure - property relationships in solids; - Characterise atomic structure and atomic bonds in solids; - Describe fundamentals of internal structure of crystalline materials; - Define point defects in crystals; - Characterise line defects in crystals and dislocation reactions in hexagonal and cubic crystal lattices; - Outline basic principles of diffusion in solids; - Describe plastic deformation mechanisms - monocrystals and polycrystals; - Define basic types of phase transformations; - Characterise failure behaviour of metallic materials.

Teaching methods

Lectures
Tutorials
Experimental work in labs

Summary

Structure-property relationships in technical materials; atomic structure and binding in solids; principles of crystallography; crystal structures of elements and binary alloys; point defects in metals and alloys; diffusion in metallic systems; line defects in crystal lattice - dislocations; solidification of metals and alloys; phase transformations in solids; hardening mechanisms.

Compulsory literature:

SMALLMAN, R.E. and R.J. BISHOP. Modern physical metallurgy and materials engineering, Sixth Edition, Oxford: Butterworth - Heinemann, 1999. ISBN 978-0-7506-4564-5. ASHBY, M.F. and D.R.H. JONES. Engineering materials 2, Second Edition, Oxford: Butterworth – Heinemann, 1998. ISBN 0 7506 4019 7.

Recommended literature:

CALLISTER, W.D. and D. G. RETHWISCH. Materials Science and Engineering. Ninth Edition. New York: John Wiley and Sons, 2014. ISBN 13 9781118319222.

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

There are no further requirements.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: - Contents and the aim of the course. Significance of studies on structure property relationships in technical materials. - Atomic structure in solids. Bohr´s model of atom. Wave mechanics model of atom. Electronic structure of elements. Periodic table of elements. Ionisation energy. - Binding in solids (ion, covalent, metallic and Van der Waals). Crystalline and amorphous solids. Basics of crystallography. Theory of repetition, translation periodicity of crystals, elementary cell, space lattice, basic principles of reciprocal lattice, symmetry of crystals, laws of geometrical crystallography. - Crystal structures of elements (molecular orbites, band theory, structures of closed packed atoms, structures with directed bounds). Allotropy. Polar structures. Binary alloys structures (solid solutions, ordered phases, electron compounds, alloys with dominant size factor, compounds of transitive elements with variable composition, interstitial compounds). - Point defects in metals and alloys. Equilibrium concentration of point defects. Formation of non-equilibrium concentration of point defects (quenching, plastic deformation). Recovery of excessive point defects. - Diffusion in metallic systems. Basic diffusion equations (I. and II. Fick´s law). Atomic theory of diffusion, mechanisms of diffusion of substitutional and interstitial atoms. Selfdiffusion. Effect of temperature- thermal activation. - Paths of high diffusivity (diffusion along grain boundaries and free surfaces). Stress induced diffusion, diffusion in alloys, diffusion at concentration gradient, practical examples of diffusion. - Line defects in crystal lattice - dislocations. Basic classification, definition. Burger´s vector, movement of dislocations, stess field of dislocation, forces affecting dislocations, energy of dislocation, stacking faults. - Interactions between dislocations: crossing of dislocations, movement of jogs on dislocations, cross slip, climbing, dislocation reactions, dislocation density, dislocation sources. - Dislocations in important crystal structures. FCC: dislocation reactions, Thompson tetraedra, stacking faults and partial dislocations. HCP: dislocation reactions, stacking faults and partial dislocations. BCC: dislocation reactions, stacking faults and partial dislocations. - Interaction of dislocations with point defects. Dislocations in systems with long-range order. Grain and subgrain boundaries, interfaces between phases. - Solidification of metals and alloys. Homogeneous and heterogeneous nucleation. Crystal growth in pure metals. Solidification of alloys. Eutectic reaction. Peritectic reaction. Solidification of castings (ingots) and conticasts. - Phase transformations in solids, classification. Diffusive transformations, precipitation, ordering, eutectoid reaction, massive transformations, polymorphous transformations. Homogeneous and heterogeneous nucleation. Diffusionless transformations. Kinetics of transformations. - Deformation strengthening. Strengthening curves of FCC, HCP and BCC monocrystals. Theory of strengthening of pure metals. Plastic deformation of polycrystals. Strengthening in two phase materials. Substitutional strengthening. Precipitation strengthening: coherent and non-coherent particles. - Fracture mechanisms. Griffith´s criterion. Stages of fracture process. Brittle fracture. Ductile fracture. Stress corrosion fracture. Fatigue fracture. Creep fracture. Seminars: 1. Introduction. 2. Phase diagrams. 3. -4. Evaluation of phase composition in Fe - C system. 5. -6. Crystallography. 7. Point defects. 8. -9. Diffusion. 10. -11. Dislocations. 12. Solidification. 13. Phase transformations. 14. Final test. Credit.

Conditions for subject completion

Full-time form (validity from: 2012/2013 Winter semester, validity until: 2019/2020 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30  15
        Examination Examination 70  36 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2015/2016 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Ostrava 2 Compulsory study plan
2014/2015 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Třinec 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Třinec 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Ostrava 2 Compulsory study plan
2011/2012 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Třinec 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R028) Material Diagnostics K Czech Třinec 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R030) Engineering Materials K Czech Třinec 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys K Czech Třinec 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2010/2011 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2008/2009 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2008/2009 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2008/2009 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2008/2009 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2007/2008 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2007/2008 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2007/2008 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2007/2008 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan
2006/2007 (B3923) Materials Engineering (3911R028) Material Diagnostics P Czech Ostrava 2 Compulsory study plan
2006/2007 (B3923) Materials Engineering (3911R029) Non-ferrous Metals and Special Alloys P Czech Ostrava 2 Compulsory study plan
2006/2007 (B3923) Materials Engineering (3911R030) Engineering Materials P Czech Ostrava 2 Compulsory study plan
2006/2007 (B3923) Materials Engineering (3911R033) Material Recycling P Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS - FMG 2016/2017 Full-time English Optional 501 - Study Office stu. block
Subject block without study plan - FMMI - P - cs 2016/2017 Full-time Czech Optional FMT - Faculty of Materials Science and Technology stu. block
O - ECTS FMG 2015/2016 Full-time Czech Optional 501 - Study Office stu. block
Subject block without study plan - FMMI - K - cs 2015/2016 Part-time Czech Optional FMT - Faculty of Materials Science and Technology stu. block
Subject block without study plan - FMMI - P - cs 2015/2016 Full-time Czech Optional FMT - Faculty of Materials Science and Technology stu. block
O - ECTS FMG - Bc. 2014/2015 Full-time Czech Optional 501 - Study Office stu. block
FMMI 2013/2014 Full-time Czech Compulsory 601 - Study Office stu. block
O - ECTS FMG - Bc. 2013/2014 Full-time Czech Optional 501 - Study Office stu. block
FMMI 2012/2013 Full-time Czech Compulsory 601 - Study Office stu. block
O - ECTS FMG - Bc. 2012/2013 Full-time Czech Optional 501 - Study Office stu. block
FMMI_ECTS 2011/2012 Full-time Czech Compulsory 600 - Faculty of Materials Science and Technology - Dean's Office stu. block

Assessment of instruction



2015/2016 Winter
2012/2013 Winter
2009/2010 Summer