636-2003/04 – Structure and Properties of Solids (SaVPLn)

Gurantor departmentDepartment of Material EngineeringCredits6
Subject guarantorprof. Ing. Vlastimil Vodárek, CSc.Subject version guarantorprof. Ing. Vlastimil Vodárek, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFMTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
KRA58 Ing. Martin Kraus, Ph.D.
VOD37 prof. Ing. Vlastimil Vodárek, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+3
Part-time Credit and Examination 18+0

Subject aims expressed by acquired skills and competences

Introduce students to structure – property relationships in solids. Define crystal structure and the influence of defects in crystalline materials on their mechanical properties. Characterize microstructural changes taking place during thermal or mechanical treatment of metallic materials.

Teaching methods

Experimental work in labs
Project work


Structure-property relationships in technical materials; atomic structure and binding in solids; principles of crystallography; crystal structures of elements and binary alloys; point defects in metals and alloys; diffusion in metallic systems; line defects in crystal lattice - dislocations; solidification of metals and alloys; phase transformations in solids; hardening mechanisms.

Compulsory literature:

SMALLMAN, R. E., R. J. Bishop. Modern Physical Metallurgy and Materials Engineering. Oxford: Butterworth, 1999. ASHBY, M. F., D. R. H. Jones. Engineering Materials 2, Oxford: Butterworth – Heinemann, 1999.

Recommended literature:

GUY, A. Elements of Physical Metallurgy. Massachusetts: Addisson-Wesley Publishing Company, 1969.

Way of continuous check of knowledge in the course of semester

Continuous verification of learning outcomes: full-time study form - 2 written tests, 2 written programs during the semester; combined study form - 1 semestral project. Final verification of study results: written exam.


Other requirements

There are no further special requirements.


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

1. Contents and the aim of the course. Significance of studies on structure property relationships in technical materials. 2. Atomic structure in solids. Bohr´s model of atom. Wave mechanics model of atom. Electronic structure of elements. Periodic table of elements. Ionisation energy. Binding in solids (ion, covalent, metallic and Van der Waals). 3. Crystalline and amorphous solids. Basics of crystallography. Theory of repetition, translation periodicity of crystals, elementary cell, space lattice, basic principles of reciprocal lattice, symmetry of crystals, laws of geometrical crystallography. 4. Crystal structures of elements (molecular orbites, band theory, structures of closed packed atoms, structures with directed bounds). Allotropy. Polar structures. Binary alloys structures (solid solutions, ordered phases, electron compounds, alloys with dominant size factor, compounds of transitive elements with variable composition, interstitial compounds). 5. Point defects in metals and alloys. Equilibrium concentration of point defects. Formation of non-equilibrium concentration of point defects (quenching, plastic deformation). Recovery of excessive point defects. Diffusion in metallic systems. Basic diffusion equations (I. and II. Fick´s law). Atomic theory of diffusion, mechanisms of diffusion of substitutional and interstitial atoms. Selfdiffusion. Effect of temperature- thermal activation. 6. Paths of high diffusivity (diffusion along grain boundaries and free surfaces). Stress induced diffusion, diffusion in alloys, diffusion at concentration gradient, practical examples of diffusion. 7. Line defects in crystal lattice - dislocations. Basic classification, definition Burger´s vector, movement of dislocations, stess field of dislocation, forces affecting dislocations, energy of dislocation, stacking faults. 8. Interactions between dislocations: crossing of dislocations, movement of jogs on dislocations, cross slip, climbing, dislocation reactions, dislocation density, dislocation sources. Dislocations in important crystal structures. FCC: dislocation reactions, Thompson tetraedra, stacking faults and partial dislocations. 9. HCP: dislocation reactions, stacking faults and partial dislocations. BCC: dislocation reactions, stacking faults and partial dislocations. - Interaction of dislocations with point defects. Dislocations in systems with long-range order. Grain and subgrain boundaries, interfaces between phases. 10. Phase Transformations. Solidification of metals and alloys. Homogeneous and heterogeneous nucleation. Crystal growth in pure metals. Solidification of alloys. Eutectic reaction. Peritectic reaction. Solidification of castings (ingots) and conticasts. 11. Phase transformations in solids, classification. Diffusive transformations, precipitation, ordering, eutectoid reaction, massive transformations, polymorphous transformations. Homogeneous and heterogeneous nucleation. 12. Diffusionless transformations. Kinetics of transformations. 13. Deformation strengthening. Strengthening curves of FCC, HCP and BCC monocrystals. Theory of strengthening of pure metals. Plastic deformation of polycrystals. Strengthening in two phase materials. Substitutional strengthening. Precipitation strengthening: coherent and non-coherent particles. 14. Fracture mechanisms. Griffith´s criterion. Stages of fracture process. Brittle fracture. Ductile fracture. Stress corrosion fracture. Fatigue fracture. Creep fracture.

Conditions for subject completion

Full-time form (validity from: 2019/2020 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 30  15
        Examination Examination 70  36 3
Mandatory attendence participation: 78% attendance on seminars and practical lessons. Elaboration of the projects.

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2021/2022 (B0214A270001) Art Foundry Engineering P Czech Ostrava 3 Optional study plan
2020/2021 (B0715A270004) Materials Engineering SVP P Czech Ostrava 2 Compulsory study plan
2020/2021 (B0715A270004) Materials Engineering SVP K Czech Ostrava 2 Compulsory study plan
2020/2021 (B0214A270001) Art Foundry Engineering P Czech Ostrava 3 Optional study plan
2019/2020 (B0715A270004) Materials Engineering SVP P Czech Ostrava 2 Compulsory study plan
2019/2020 (B0715A270004) Materials Engineering SVP K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

2020/2021 Winter