636-3003/01 – Physical Metallurgy (FyzMet)

Gurantor departmentDepartment of Material EngineeringCredits6
Subject guarantorprof. Dr. Ing. Jaroslav SojkaSubject version guarantorprof. Dr. Ing. Jaroslav Sojka
Study levelundergraduate or graduateRequirementChoice-compulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2014/2015Year of cancellation
Intended for the facultiesFEI, FMT, USPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
SOJ33 prof. Dr. Ing. Jaroslav Sojka
BET37 doc. Ing. Petra Váňová, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+2
Combined Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

Students are capable to solve real problems that can be derived from physical metallurgy, namely: They are able to analyse and solve problems of diffusion in metallic systems – interstitial diffusion, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; They are able to analyse and designs regimes of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; They are capable to solve problems of segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; They are capable to analyse and solve problems of restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation.

Teaching methods

Lectures
Tutorials
Experimental work in labs
Project work

Summary

Diffusion in metallic systems – interstitial diffusion, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; Mechanisms of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; Segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; Restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation. Application and modelling in specific metallic systems.

Compulsory literature:

SOJKA, J. Physical metallurgy. Ostrava: VŠB-TU Ostrava, 2013. Available from: http://katedry.fmmi.vsb.cz/Opory_FMMI_ENG/AEM/Physical%20Metallurgy.pdf ABBASCHIAN, R., L. ABBASCHIAN a R. E. REED-HILL. Physical metallurgy principles. 4. vyd. Stamford: Cengage Learning, 2009. ISBN 978-0-495-08254-5. HUMPHREYS, F. J. a M. HATHERLY. Recrystallization and related phenomena. 2. vyd. Oxford: Elsevier, 2004. ISBN 0-08-044164-5.

Recommended literature:

SMALLMAN, R. E a A. H. W. NGAN. Physical metallurgy and advanced materials. 7. vyd. Oxford: Elsevier Butterworth-Heinemann, 2007. ISBN 978-0-7506-6906-1. LEJČEK, P. Grain boundary segregation in metals. Berlin: Springer, 2010. ISBN 978-3-642-12504-1.

Way of continuous check of knowledge in the course of semester

E-learning

Další požadavky na studenta

There are no further special requirements.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. – 4. Diffusion in metallic systems – diffusion mechanisms, derivation of the 1. and 2. Fick´s law, interstitial diffusion, theory of random walk and mean quadratic replacement, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; 5. – 6. Mechanisms of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; 7. - 8. Segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; 9. – 10. Restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation; 11. – 13. Application and modelling of physical metallurgy principles in specific metallic systems (micro-alloyed steels, low-alloyed steels, corrosion resistant steels, Ni-Al alloys, Cu-alloys, Al-alloys). 14. Summary; examples from engineering practice.

Conditions for subject completion

Combined form (validity from: 2014/2015 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 35  21
        Examination Examination 65  30
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2019/2020 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan
2019/2020 (N3923) Materials Engineering (3911T033) Material Recycling P Czech Ostrava 1 Compulsory study plan
2019/2020 (N3923) Materials Engineering (3901T077) Biomechanical Engineering P Czech Ostrava 1 Compulsory study plan
2019/2020 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2019/2020 (N0533A110006) Applied Physics P Czech Ostrava 1 Choice-compulsory type B study plan
2019/2020 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Choice-compulsory study plan
2018/2019 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2018/2019 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan
2018/2019 (N3923) Materials Engineering (3911T033) Material Recycling P Czech Ostrava 1 Compulsory study plan
2018/2019 (N3923) Materials Engineering (3901T077) Biomechanical Engineering P Czech Ostrava 1 Compulsory study plan
2018/2019 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Choice-compulsory study plan
2017/2018 (N3923) Materials Engineering (3911T033) Material Recycling P Czech Ostrava 1 Compulsory study plan
2017/2018 (N3923) Materials Engineering (3901T077) Biomechanical Engineering P Czech Ostrava 1 Compulsory study plan
2017/2018 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2017/2018 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan
2017/2018 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Choice-compulsory study plan
2016/2017 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2016/2017 (N3923) Materials Engineering (3911T033) Material Recycling P Czech Ostrava 1 Compulsory study plan
2016/2017 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan
2016/2017 (N1701) Physics (1702T001) Applied physics P Czech Ostrava 1 Choice-compulsory study plan
2016/2017 (N3923) Materials Engineering (3901T077) Biomechanical Engineering P Czech Ostrava 1 Compulsory study plan
2016/2017 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Choice-compulsory study plan
2015/2016 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2015/2016 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan
2015/2016 (N3923) Materials Engineering (3911T033) Material Recycling P Czech Ostrava 1 Choice-compulsory study plan
2014/2015 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials P Czech Ostrava 1 Choice-compulsory study plan
2014/2015 (N3923) Materials Engineering (3911T036) Advanced Engineering Materials K Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
FMMI 2017/2018 Full-time English Compulsory 601 - Study Office stu. block
FMMI 2016/2017 Full-time English Compulsory 601 - Study Office stu. block
FMMI 2015/2016 Full-time English Compulsory 601 - Study Office stu. block
FMMI_N 2014/2015 Full-time Czech Compulsory 601 - Study Office stu. block