636-3003/04 – Physical Metallurgy (FyzMet)

Gurantor departmentDepartment of Material EngineeringCredits6
Subject guarantorprof. Dr. Ing. Jaroslav SojkaSubject version guarantorprof. Dr. Ing. Jaroslav Sojka
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageEnglish
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFMT, USPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
SOJ33 prof. Dr. Ing. Jaroslav Sojka
BET37 doc. Ing. Petra Váňová, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+2
Part-time Credit and Examination 18+0

Subject aims expressed by acquired skills and competences

Students are capable to solve real problems that can be derived from physical metallurgy, namely: They are able to analyse and solve problems of diffusion in metallic systems – interstitial diffusion, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; They are able to analyse and designs regimes of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; They are capable to solve problems of segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; They are capable to analyse and solve problems of restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation.

Teaching methods

Lectures
Tutorials
Experimental work in labs
Project work

Summary

Diffusion in metallic systems – interstitial diffusion, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; Mechanisms of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; Segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; Restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation. Application and modelling in specific metallic systems.

Compulsory literature:

SOJKA, J. Physical metallurgy. Ostrava: VŠB-TU Ostrava, 2013. Available from: http://katedry.fmmi.vsb.cz/Opory_FMMI_ENG/AEM/Physical%20Metallurgy.pdf ABBASCHIAN, R., L. ABBASCHIAN a R. E. REED-HILL. Physical metallurgy principles. 4. vyd. Stamford: Cengage Learning, 2009. ISBN 978-0-495-08254-5. HUMPHREYS, F. J. a M. HATHERLY. Recrystallization and related phenomena. 2. vyd. Oxford: Elsevier, 2004. ISBN 0-08-044164-5.

Recommended literature:

SMALLMAN, R. E a A. H. W. NGAN. Physical metallurgy and advanced materials. 7. vyd. Oxford: Elsevier Butterworth-Heinemann, 2007. ISBN 978-0-7506-6906-1. LEJČEK, P. Grain boundary segregation in metals. Berlin: Springer, 2010. ISBN 978-3-642-12504-1.

Way of continuous check of knowledge in the course of semester

Continuous verification of learning outcomes: full-time study form – 2 written tests, 2 written programs during the semester; combined study form – 1 semestral project. Final verification of study results: written exam.

E-learning

Other requirements

There are no further special requirements.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. – 4. Diffusion in metallic systems – diffusion mechanisms, derivation of the 1. and 2. Fick´s law, interstitial diffusion, theory of random walk and mean quadratic replacement, substitutional diffusion – self-diffusion; impurity diffusion, inter-diffusion, diffusion in ternary systems, accelerated diffusion by imperfections of crystal structure; 5. – 6. Mechanisms of metallic materials strengthening – plastic deformation strengthening, grain boundary strengthening, solid solution strengthening, precipitation strengthening, strengthening by phase transformation; 7. - 8. Segregations in metallic materials – macro-segregations, micro-segregations grain boundary segregations including concurrence segregations etc.; 9. – 10. Restoration processes in metallic materials – recovery, primary recrystallisation, grain coarsening, secondary and tertiary recrystallisation; 11. – 13. Application and modelling of physical metallurgy principles in specific metallic systems (micro-alloyed steels, low-alloyed steels, corrosion resistant steels, Ni-Al alloys, Cu-alloys, Al-alloys). 14. Summary; examples from engineering practice.

Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N0715A270002) Materials Engineering SPO P Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270002) Materials Engineering SPO K Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270005) Advanced Engineering Materials TEO P English Ostrava 1 Compulsory study plan
2019/2020 (N0715A270002) Materials Engineering SPO P Czech Ostrava 1 Compulsory study plan
2019/2020 (N0715A270005) Advanced Engineering Materials TEO P English Ostrava 1 Compulsory study plan
2019/2020 (N0715A270002) Materials Engineering SPO K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner