637-0902/02 – Metallurgy of Pure Metals (MČK)

Gurantor departmentDepartment of Non-ferrous Metals, Refining and RecyclingCredits10
Subject guarantorprof. Ing. Jaromír Drápala, CSc.Subject version guarantorprof. Ing. Jaromír Drápala, CSc.
Study levelpostgraduateRequirementChoice-compulsory
YearSemesterwinter + summer
Study languageCzech
Year of introduction2010/2011Year of cancellation
Intended for the facultiesFMTIntended for study typesDoctoral
Instruction secured by
LoginNameTuitorTeacher giving lectures
DRA30 prof. Ing. Jaromír Drápala, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 2+0
Part-time Examination 28+0

Subject aims expressed by acquired skills and competences

Student of PhD study will be able to: - understand necessity and significance of pure materials for development of new disciplines, such as micro-electronics, opto-electronics … - classify methods of division and refining of materials, stages of purification and principles of production of high-purity materials. - describe basic characteristics of ion exchange, chromatography, sorption, extraction, distillation, rectification, transport reactions, electrical dialysis, electrolysis, transfer of electricity. - understand significance effective distribution coefficients at separation of materials and relationships with thermodynamics of phase balances. - use theoretical knowledge of crystallisation methods of directional crystallisation and zonal melting including CZ method at refining of materials and preparation of crystals. - analyse relationships at the phase interface crystal – melt and their influence on effective distribution coefficient, mass transfer, kinetics of growth of crystallic materials, concentration under-cooling, convection and growth defects. - understand significance of mass transfer and continuous zonal refining - acquire an overview of techniques and equipment suitable for refining of specific materials - apply suitable physical - metallurgical analytical methods for characteristic of high-purity materials - determine the values of equilibrium and effective distribution coefficients from binary and ternary diagrams, thermodynamic equations and from experiment - choose an appropriate technique for obtaining of thin layers by epitaxial technique and diffusion

Teaching methods

Lectures
Individual consultations
Project work

Summary

The subject deals with methods of refining and preparation of high purity materials required in new perspective areas of science and technology. High degree of chemical purity is attainable by means of chemical, hydrometallurgical, physico-chemical, pyrometallurgical methods. Classification of methods of division and refining of materials, stages of purification and principles of production of high-purity materials.

Compulsory literature:

DRÁPALA, J. and KUCHAŘ, L. Metallurgy of Pure Metals. Cambridge International Science Publishing Ltd., 2008. ASM Handbook, Vol. 2, Properties and Selection: Alloys and Special-Purpose Materials. ASM International, 1990. CHAUDRON G.: Monographies sur les métaux de haute pureté. Masson, Paris, T.1 - 1972, T.2 - 1977, T.3 - 1977, in French.

Recommended literature:

DRÁPALA, J. and KUCHAŘ, L. Metallurgy of Pure Metals. Cambridge International Science Publishing Ltd., 2008. ASM Handbook, Vol. 2, Properties and Selection: Alloys and Special-Purpose Materials. ASM International, 1990. CHAUDRON G.: Monographies sur les métaux de haute pureté. Masson, Paris, T.1 - 1972, T.2 - 1977, T.3 - 1977, in French.

Way of continuous check of knowledge in the course of semester

Tutorial

E-learning

Yes – ½ of the subject

Other requirements

Project "refining technologies" - presentation in Power Point Project "proposal of refining technologies of selected metal" - purity 5N .. 6N

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Theoretic bases of preparation of highly pure materials, properties and signification of pure materials. Methods of the description of purity, effect of impurities on the properties of substances. Classification of methods of separation and refining of substances, stage of cleaning and fundamentals at production of highly pure materials. Theoretic principles of ion exchange, chromatography, sorption and extraction. Theoretic principles of distillation, rectification, transport response, electro-dialysis, electrolysis, electro-transport. Equilibrium distribution coefficient - methods of determination, retrograde solubility, correlation dependencies of ko on different parameters Thermodynamic methods of determination ko, activity, activity coefficient, theory of ideal, dilute, regular and real solutions - Kaufman, Pelton Ternary systems, distribution coefficient in ternary system Conditions on the phase crystal - melt interface, kinetic and effective distribution coefficient, Burton - Prim – Slichter equation Methods of kef determination from experimental results, method of the material balance, Vigdorovich method, frozen zone, slot method Jackson's and Temkin's theory of crystallization, kinetics of the growth of crystalline materials Temperature and concentration conditions of crystallization, temperature and concentration undercooling, incidences, Tiller's equation Convection in melt, influence of the convection on origin defects, buoyancy, Marangoni, rotary, magnetic convection Crystallization methods, Classification of crystallization techniques Directional crystallization, Bridgman's method, Czochralsi method of drawing single crystals Zone melting, multiple zone refining, Burris - Stockman - Dillon theory, final distribution in the zone melting, techniques of zone melting, "floating zone" method Mass transfer in directional crystallization and zone melting, reasons, incidences Continuous zone refining, preparation of metals with homogenous distribution of elements, floating crucible method, zone levelling Epitaxial techniques for the formation of thin layers – LPE, VPE, LE, SPE, EEE, MBE methods Semiconductor materials, purification and production technology Preparation of semiconductor compounds from non-stoichiometric melt Refractory metals, purification and preparation of single crystals Diffusion, PVD, CVD method Physical metallurgical characteristics of highly pure materials and methods of purity determination

Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2022/2023 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2022/2023 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2021/2022 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2021/2022 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2020/2021 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2020/2021 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2019/2020 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2019/2020 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2018/2019 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2018/2019 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2017/2018 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2017/2018 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2016/2017 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2016/2017 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2015/2016 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2015/2016 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2014/2015 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2014/2015 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2013/2014 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2013/2014 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2012/2013 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2012/2013 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan
2011/2012 (P3924) Materials Science and Engineering P Czech Ostrava Choice-compulsory study plan
2011/2012 (P3924) Materials Science and Engineering K Czech Ostrava Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.