637-3009/01 – Nanomaterials (NM)
Gurantor department | Department of Non-ferrous Metals, Refining and Recycling | Credits | 6 |
Subject guarantor | prof. Ing. Jaromír Drápala, CSc. | Subject version guarantor | prof. Ing. Jaromír Drápala, CSc. |
Study level | undergraduate or graduate | Requirement | Choice-compulsory |
Year | 1 | Semester | summer |
| | Study language | Czech |
Year of introduction | 2014/2015 | Year of cancellation | 2019/2020 |
Intended for the faculties | FMT | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
Student will be able
- to define perspective groups of nano-materials.
- to describe and characterise various application areas of nano-materials.
- to classify and explain the technologies for processing of nano-materials.
- to choose the optimal metallurgical processes for production of nano-materials.
- to evaluate and apply knowledge gained at preparation of nano-materials by methods of intensive forming.
Teaching methods
Lectures
Seminars
Tutorials
Experimental work in labs
Summary
The course focuses on the characteristics of properties and processes of preparation of individual types of nano-structural materials: Methods for the synthesis of nano-structural materials (condensation, mechanical milling and alloying, powder metallurgy, spraying of suspensions, electro-deposition, devitrification of amorphous phases, etc.). Moreover individual technological procedures applied in technical practice will also be characterised: Chemical methods for preparation of nano-materials, pulsed laser methods, pyrolysis methods, application of plasma generated by high-frequency. PVD, CVD, epitaxy. New findings from the research of nano-technologies and nano-structural materials focusing on their applications at designing structures. Technology for production of poly-component metallic materials with the basic building units (dimensions, shape, structure, interfacial boundaries) smaller than 100 nm. Special attention is paid to technologies based on severe plastic deformation (SPD) and controlled by conditions of forming. Students will be familiarised with the influence of unconventional forming technologies ECAP (Equal Channel Angular Pressing), High-Pressure Torsion (HPT), CEC (Cyclic Extrusion Compression), TC (Torsion with Compression), Continuous Confined Strip Shearing (C2S2), Continuous DECAP, Conshearing (CS ), Semi-solid Casting (tixoforming) on the structure and mechanical properties of metallic structural micro- and nano-materials. Homogeneity of deformation in ultra-fine grained and nano-structural metallic materials prepared by severe plastic deformation. Determination of stress and strain of individual SPD technologies. Super-plastic behaviour of ultra-fine grained and nano-structural materials. Preparation of nano-structural materials based on Ti and Ti alloys for applications in medicine.
Compulsory literature:
GUSEV, A.I., REMPEL, A.A. Nanocrystalline Materials. CISP, Cambridge, 2004, 352 p.
ZHU, Y.T. et al. Ultrafine Grained Materials II. TMS, 20027. RIETH, M. Nano-Engieering in Science and Technology. London 2003, 151 p.
Recommended literature:
WANG, Z.I. Characterization of Nanophase Materials. Weinheim, Federal Republic of Germany, 2000, 406 p.
FENDLER, J.H. Nanoparticles and Nanostructured Films. Preparation, Characterization and Applications. Weinheim, Federal Republic of Germany, 1998, 468 p.
3. EDELSTEIN, A.S., CAMMARATA, R.C. Nanomaterials, Synthesis, Properties and Application. Inst. of Physics Publishing, 1996.
4. POOLE, CH.P., OWENS F. J. Introduction to Nanotechnology. New Jersey, 2003, 387 p.
5. The Handbook of Nanotechnology. Ed. Akhlesh Lakhtakia, 2004.
Additional study materials
Way of continuous check of knowledge in the course of semester
Two check tests
E-learning
Not available.
Other requirements
no further requierements to student
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Charakteristika nanostrukturních materiálů, velikost a měrný povrch částic. Ovlivnění vlastností materiálů poměrem atomů v objemu a na povrchu částic. Základní typy nanostrukturních materiálů a jejich aplikace.
2. Metody přípravy nanostrukturních materiálů a jejich rozdělení. Příprava nanostrukturních materiálů z různých fází (plynné, kapalné, vodné roztoky, suspenze, pevné fáze). Možnosti přípravy nanostrukturních materiálů.
3. Příprava nanostrukturních materiálů kondenzací z inertních plynů. Příprava nanostrukturních materiálů procesem PVS (Physical Vapor Synthesis). Reakce reakčních plynů s parami prekurzoru. Vliv podmínek přípravy na vlastnosti materiálů. Příprava kovových materiálů, intermetalických sloučenin, příprava oxidů, karbidů, nitridů apod.
4. Plazmové procesy přípravy nanostrukturních materiálů. Charakteristika plazmy, indukční a obloukové plazma. Generace plazmy, odpařování a kondenzace materiálu. Chemická syntéza, procesy pyrolýzy.
5. Příprava nanostrukturních materiálů procesem NAS (Nano Arc Synthesis). Využití energie obloukového výboje k přípravě jednosložkových a vícesložkových oxidů kovů vzácných zemin a tranzitivních kovů. Metody přípravy uhlíkatých nanostrukturních materiálů.
6. Metody přípravy roztoků, mikroemulsí, aerosolů pro přípravu nanostrukturních a nanokompozitních materiálů, sloučeniny směsných krystalů. Jednosložkové a vícesložkové systémy (WCo, WCoV, WCoCr2C3 apod.).
7. Příprava nanostrukturních materiálů procesy rychlého tuhnutí tavenin. Vliv chemického složení tavenin a rychlosti ochlazování na strukturu a velikost částic. Příprava jemnozrnných materiálů atomizací tavenin kovů pomocí inertního plynu o vysoké rychlosti, vliv podmínek atomizace a složení conditions of atomisation, and of the melt composition on the material structure.
8. Preparation of nano-structural materials by milling process in high-energy ball mills. Preparation of multi-component materials by the process of mechanical alloying (TiC, TiB2, ...).
9. Methods for evaluation of properties of nano-structural materials. Determination of size of particles, mechanical properties, evaluation of properties of thermally sprayed coatings and surface layers. Structural characteristics. Mechanical properties of nano-crystalline metals. Change of the properties of metallic materials in dependence on the grain size. Super-plastic behaviour.
10. Deformation of metals and alloys (elastic, plastic), methods for determination of plastic deformation (absolute, relative, true strain, deformation coefficients, the law of constancy of the volume). Analysis of plastic deformation performed by the SPD technology using computer simulation. Properties of metallic materials and nano-structural materials (Hall-Petch equation, strength, ductility, grain growth).
11. Technologies: Top-down, Bottom-up, SPD – UFG and NC material (ultra-fine grained and nano-structural materials).
12. Severe Plastic Deformation (SPD), methods for preparation of nano-crystalline metals: High-pressure torsion (HPT), Equal channel angular processing (ECAP, DECAP), Cyclic extrusion-compression (CEC), Accumulative roll-bonding (ARB), continuous processes (Conshearing, C2S2, CSPD) and tixoforming.
13. Basic thermodynamic conditions for production of nano-crystalline materials by severe plastic deformation. Application of technologies ECAP, CEC and TC, evolution of structure and properties of selected alloys. Influence of the shape of tools, comparison of different technologies, magnitude of deformation, stress state, evolution of structure, aging, recrystallisation, achievable properties. Analysis of thermo-mechanical conditions during the ECAP process using the software FormFEM.
14. The principle and the physical nature of the structure evolution at application of SPD technologies. Construction of individual devices, processed alloys and properties. Conditions of structure stability (instability). Analysis of the structure evolution with use of software. Industrial use of SPD technologies at production of nano-crystalline materials. Examples of the use of nano-crystalline materials in modern structures.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction