639-3005/03 – Special Statistical Methods (SSM)
Gurantor department | Department of Quality Management | Credits | 6 |
Subject guarantor | prof. Ing. Darja Noskievičová, CSc. | Subject version guarantor | prof. Ing. Darja Noskievičová, CSc. |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | summer |
| | Study language | Czech |
Year of introduction | 2019/2020 | Year of cancellation | |
Intended for the faculties | FMT | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
Students will:
- be able to select suitable graphical methods and statistical tests for verification of data presumptions
- be able to realize complex statistical data analysis
- be able to select suitable method of random sampling
- be able to select and apply suitable system of sampling plans
- be able to compute a analyze supplier and customer risks
- be able to aplly different methods of acceptance sampling for variables
- be able to compute false and missing signal and ARL for selected control charts
- be able to construct and analyse operational characteristics of selected control charts
- be able to select suitable methods of SPC when presumptions for traditional Shewhart control charts are not met
- be able to apply nontraditional SPC methods (control charts for nonnormaly distributed data, for autocorrelated data, for multivariable characteristics, for short run processes, for little changes of process parameters).
Teaching methods
Lectures
Tutorials
Project work
Summary
This subject aims to make deeper students´ theoretical basis and practical
experience with statistical methods for quality management. A big stress is
put on the verification of data pre-conditions, complex solution of problems.Non-traditional methods, especially in the field of statistical process control, are taken into account.
Compulsory literature:
Recommended literature:
NOSKIEVIČOVÁ, D. Special Statistical Methods for Quality Management. Ostrava: VŠB-TUO, 2012. Available from: http://katedry.fmmi.vsb.cz/Opory_FMMI_ENG/QM/Special%20Statistical%20Methods.pdf.
Way of continuous check of knowledge in the course of semester
Combined exam.
Elaboration of 3 individual projects.
Credit test.
Presentation at 80 % of excercises or seminars as minimum.
E-learning
Integrovaný systém modulární počítačové podpory výuky ekonomicko-technického zaměření (http://lms.vsb.cz): Vzdělávací modul 4 – Zlepšování procesů s využitím statistické analýzy:submodul Analýza statistické stability procesu, submodul Postupy analýzy příčin variability, návrhy opatření ke zlepšení, vyhodnocení dosaženého zlepšení. NOSKIEVIČOVÁ, D. Speciální statistické metody – nekonvenční regulační diagramy. Studijní opory. Ostrava: VŠB-TU Ostrava, 2015. NOSKIEVIČOVÁ, D. Speciální statistické metody. Studijní opory. Ostrava: VŠB-TU Ostrava, 2008.BRODECKÁ, K. a kol. Elektronická sbírka příkladů k předmětům zaměřeným na aplikovanou statistiku v rámci studijních plánů oboru Management jakosti. Studijní opory. Ostrava: VŠB-TU Ostrava, 2009. NOSKIEVIČOVÁ, D. Special Statistical Methods for Quality Management. Studijní opory. Doplňkové texty v anglickém jazyce Ostrava: VŠB-TU Ostrava, 2012.
Other requirements
Elaboration of individual projects; elaboration of seminar work and its prezentation; running checking tests.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Complex statistical data analysis (verification of normality, homogenity, data independence)
2. Methods of random sampling.
3. Statistical process control (SPC) as a hypothesis testing, risk of false signal, risk of missing signal, ARL, operating characteristics curve of control chart.
4. SPC phases.
5. Preconditions for the correct application of Shewhart control charts. Nontraditional SPC methods (survey).
6. Short Run control charts. Control charts for nonnormally distributed data.
7. Multivariate SPC.
8. SPC for autocorrelated data.
9. Statistical basic of acceptance sampling. Efficiency and effectivity of sampling plans.
10. Computation of producer and consumer risks. Construction of OC curve of sampling plans. Computation of sampling plan parameters.
11. Variable and attribute acceptance sampling plans.
12. Systems of sampling plans.
13. Additional practical aspects of acceptance sampling.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction