651-0002/02 – Fyzikální chemie (FCH)

Garantující katedraKatedra chemie a fyzikálně-chemických procesůKredity7
Garant předmětuprof. Ing. Bedřich Smetana, Ph.D.Garant verze předmětuprof. Ing. Bedřich Smetana, Ph.D.
Úroveň studiapregraduální nebo graduálníPovinnostpovinný
Ročník2Semestrzimní
Jazyk výukyangličtina
Rok zavedení2023/2024Rok zrušení
Určeno pro fakultyFMTUrčeno pro typy studiabakalářské
Výuku zajišťuje
Os. čís.JménoCvičícíPřednášející
SME06 prof. Ing. Bedřich Smetana, Ph.D.
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zápočet a zkouška 2+4
kombinovaná Zápočet a zkouška 18+6

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Cílem předmětu je získání znalostí z fyzikální chemie, z oblasti termodynamiky/kinetiky a umět je aplikovat. Cílem je umět definovat fyzikální, chemické a fyzikálně-chemické děje, termodynamické a kinetické pojmy a zákony. Umět používat získané teoretické poznatky také na výpočetních a laboratorních cvičeních. Ověřit si platnost vybraných fyzikálně-chemických zákonů v rámci laboratorních cvičení. Umět demonstrovat a využívat nabyté znalosti na vybrané procesy: chemické, fyzikální a fyzikálně-chemické. Cílem je seznámit studenty s možnostmi využití termodynamických veličin a funkcí a naučit je používat tyto veličiny a funkce pro popis chování systémů a dějů z teoretického i praktického hlediska. Cílem je také získání vybraných znalostí z oblasti termo-fyzikálního chování. Cílem je získání schopností sledovat, popsat/charakterizovat chemické, fyzikální a fyzikálně-chemické procesy a shrnout, objasnit a interpretovat základní principy, děje a procesy. Sledovat a umět popsat souvislosti mezi výsledným chováním systémů/průběhem dějů a vlivem klíčových faktorů jako je teplota a tlak.

Vyučovací metody

Přednášky
Individuální konzultace
Cvičení (v učebně)
Experimentální práce v laboratoři

Anotace

Obsahem předmětu je chemická termodynamika a chemická kinetika s teoretickým přesahem do oblasti vybraných technologických aplikací.

Povinná literatura:

[1] Moore, W., J. Fyzikální chemie: příručka pro vysoké školy chemickotechnologické, SNTL, Praha, 1981. [2] Kellö, V., Tkáč, A. Fyzikálna chémia: vysokoškolská učebnica, Alfa, Bratislava, 1977. [3] Novák, J. a kol. Fyzikální chemie: bakalářský a magisterský kurz. VŠCHT, Praha, 2008. [4] Peřinová, K., Smetana, B., Zlá, S., Kostiuková, G. Teoretické základy fyzikální chemie v příkladech, VŠB, Ostrava, 2018. [5] Atkins, P., de Paula, J. Physical Chemistry 9th Edition, Oxford University Press, New York, 2010. [6] Dudek, R., Peřinová K., Kalousek, J. Teorie technologických procesů. Ostrava: Vysoká škola báňská - Technická univerzita Ostrava, 2012. ISBN 978-80-248-2571-7. Dostupné z: https://www.vsb.cz/e-vyuka/cs/subject/619-2010/01. [7] Dobrovská, J., Peřinová. K. Teoretické základy technologických procesů v příkladech, VŠB-TUO, 2018. Dostupné z: https://www.vsb.cz/e-vyuka/cs/subject/619-2010/01.

Doporučená literatura:

[1] Brdička, R. Základy fysikální chemie: vysokoškolská učebnice 2. vyd., Academia, Praha, 1977. [2] Silbey, R., J., Alberty, R., A., Bawendi, M., G. Physical chemistry 4th Edition. Wiley, USA, 2004. [3] Gaskell, D., R. Introduction to Thermodynamics of Materials, 3rd. Ed., Taylor and Francis, New York-London 1995, ISBN 1-56032-432-5.

Forma způsobu ověření studijních výsledků a další požadavky na studenta

Zápočet, písemná a ústní část zkoušky.

E-learning

Další požadavky na studenta

přednáší, zkouší, poskytuje konzultace

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

Přednášky: 1. Úvod do předmětu. Základní pojmy, soustava, termodynamické vlastnosti soustavy, termodynamický děj, termodynamické stavové veličiny a funkce. Plynný skupenský stav. Ideální a reálný plyn. Základní zákony pro ideální plyn a popis chování reálných plynů. Stavové rovnice. 2. Chemická termodynamika. Tepelné kapacity látek, výpočet, změny s teplotou a v průběhu chemické reakce. I. věta termodynamická, formulace a význam. Práce ideálního plynu. Teplo za stálého tlaku a objemu. Entalpie a vnitřní energie. Termodynamická definice molových tepel. 3. Ohřev a ochlazování látek. Reakční tepla. Termochemické zákony. Výpočet reakčních tepel. Závislost reakčního tepla na teplotě - Kirchhoffovy zákony a jejich použití. Teoretické reakční teplota. 4. II. věta termodynamická, její formulace a význam. Tepelný stroj, Carnotův cyklus. Entropie, její význam a změny pro vybrané procesy (děje). Termodynamické potenciály, Helmholtzova a Gibbsova energie, jejich význam pro rovnováhu a průběh dějů. Afinita. Spojení I. a II. VT, vztahy mezi termodynamickými stavovými funkcemi. Maxwellovy rovnice. Teplotní závislost Helmholtzovy a Gibbsovy energie, Gibbs-helmholtzovy rovnice a jejich použití. 5. Parciální molární veličiny, definice, vlastnosti. Chemický potenciál a jeho význam. Gibbs–Duhemova rovnice. Chemické rovnováhy. Rovnice reakční izotermy, pravá termodynamická rovnovážná konstanta. Vyjadřování rovnovážných konstant pro homogenní a heterogenní chemické reakce. Stupeň přeměny a výpočet rovnovážného složení. Vliv teploty a tlaku na rovnováhu chemické reakce. Rovnice reakční izotermy, izobary a izochory. Princip akce a reakce (Le Chaterier–Braunův). 7. Fázové rovnováhy. Gibbsův zákon fází, fáze, skupenství, složka, stupeň volnosti. Jednosložková soustava, fázový diagram, trojný bod. Rovnováha jednosložkové dvoufázové soustavy, Clapeyronova a Clausius–Clapeyronova rovnice. Rovnováha dvousložkové soustavy. III. věta termodynamická. 9. Chemická kinetika a její význam. Kinetika homogenních chemických reakcí. Základní pojmy, rychlost chemické reakce, Guldberg–Waagův zákon, kinetická interpretace rovnováhy, molekularita a řád chemické reakce, mechanismus. Kinetika reakcí1.řádu, poločas reakce. Kinetika reakcí 2. a vyšších řádů. 10. Mechanismus simultánních chemických reakcí, reakce protisměrné, souběžné a následné, matematické řešení. Závislost reakční rychlosti na teplotě (Arrheniova rovnice). Teorie reakční rychlosti, srážková teorie a teorie absolutních reakčních rychlostí. Závislost reakční rychlosti na tlaku. 11. Kinetika heterogenních chemických reakcí, články heterogenní kinetiky. Difúze, molekulární difúze, I. a II. Fickův zákon, následná a souběžná difúze, principy řešení. Vliv teploty na difúzní procesy. Adsorpce, fyzikální a chemická. Adsorpce plynů na tuhé fázi. Adsorpční izotermy, Freundlichova, Langmuirova, BET. Jednodušší aplikace spojování článků heterogenní kinetiky. 12. Termická disociace uhličitanů, oxidů, sulfidů, nitridů. Disociační teplota a napětí. Přímá a nepřímá redukce oxidů. Termodynamika a kinetika disociace a redukce. Boudouardova reakce. Topochemické reakce. Oxidace kovů. 13. Roztavené kovy a oxidické systémy. Struktura roztaveného kovu (základní teorie). Struktura roztavených oxidických systémů (molekulární a iontová teorie. Fyzikální vlastnosti roztavených systémů (viskozita, difúze, adsorpce a povrchové napětí). 14. Homogenní a heterogenní nukleace. Krystalizace. Nekovové fáze v kovu (termodynamika a kinetika jejich vznikuvzniku). Interakce plynů s roztaveným kovem. Sievertsův zákon. Teoretická cvičení: 1. Úvod - seznámení s časovým harmonogramem cvičení, podmínkami pro získání zápočtu a doporučenou literaturou. Zákony pro ideální plyn a ideální plynné směsi, stavové rovnice pro reálný plyn. 2. Definice tepelné kapacity, její závislost na teplotě. Izobarická a izochorická tepelná kapacita. Molární a specifická tepelná kapacita. Pravá tepelná kapacita a střední hodnota tepelné kapacity. Změna tepelné kapacity při chemické reakci. 3. Ohřev a ochlazování látek (izobarický a izochorický ohřev). Ohřev látek s izotermní fázovou přeměnou. Kalorimetrická rovnice. 4. Reakční teplo, termochemické zákony (Lavoisierův a Hessův). Standardní reakční entalpie, slučovací entalpie, spalná entalpie a jejich vzájemné souvislosti. 5. Závislost reakční entalpie na teplotě (Kirchhoffovy rovnice). Reakční entalpie pro chemickou reakci s izotermickou fázovou přeměnou látek a bez této přeměny. 6. Změna entropie při ohřevu a ochlazování látek. Standardní reakční entropie a její závislost na teplotě. Standardní reakční Gibbsova energie a její závislost na teplotě. 7. Samostatná výpočtová práce I. 8. Chemické rovnováhy. Rovnovážné konstanty pro reakce homogenní a heterogenní. Rovnovážný stupeň přeměny a jeho aplikace při výpočtu rovnovážného složení a výpočtu rovnovážné konstanty. 9. Chemické rovnováhy. Rovnice reakční izotermy, izobary a izochory. Simultánní rovnováhy. Termická disociace sloučenin. přímá a nepřímá redukce sloučenin 10. Fázové rovnováhy v jednosložkové dvoufázové soustavě. Gibbsův fázový zákon. Aplikace Clapeyronovy a Clausius-Clapeyronovy rovnice. 11. Kinetika homogenních chemických reakcí. Výpočet reakční rychlosti (sledování časového průběhu reakce). Kinetické rovnice pro reakci 1. a 2. řádu. Závislost rychlostní konstanty na teplotě (Arrheniova rovnice). 12 Koncentrace roztoků a jejich vzájemné přepočty. Raoultův a Henryho zákon, ideální a velmi zředěný roztok. 13 Reálné roztoky neelektrolytů, různé pojetí aktivit. Rozpustnost plynů v kovech, Sievertsův zákon. 14. Samostatná výpočtová práce II. Laboratorní cvičení Součástí je seznámení studentů s bezpečností práce v laboratoři, s laboratorními úlohami, základními informacemi o průběhu cvičení a s požadavky pro zpracování protokolu. 1) Stanovení spalného tepla organických látek. 2) Stanovení rovnovážné konstanty disociace slabého elektrolytu. 3) Stanovení teplotní závislosti tlaku nasycených par kapaliny a její molární výparné entalpie. 4) Fázový diagram třísložkové soustavy. 5) Termický rozklad uhličitanů. 6) Adsorpce kyseliny šťavelové na aktivním uhlí. 7) Povrchové napětí vybraných kapalin metodou maximálního tlaku v bublince. 8) Stanovení hustoty vodných roztoků glycerolu v závislosti na koncentraci metodou ponorného tělíska a pyknometricky.

Podmínky absolvování předmětu

Prezenční forma (platnost od: 2023/2024 zimní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodůMax. počet pokusů
Zápočet a zkouška Zápočet a zkouška 100 (100) 51
        Zápočet Zápočet  
        Zkouška Zkouška 100  51 3
Rozsah povinné účasti: xxxxxx

Zobrazit historii

Podmínky absolvování předmětu a účast na cvičeních v rámci ISP: xxxxx

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2024/2025 (B0719A270003) Materiálové inženýrství P angličtina Ostrava 2 povinný stu. plán
2023/2024 (B0719A270003) Materiálové inženýrství P angličtina Ostrava 2 povinný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku

Hodnocení Výuky

Předmět neobsahuje žádné hodnocení.