653-2009/01 – Nanotechnologies (NT)

Gurantor departmentDepartment of Materials Engineering and RecyclingCredits5
Subject guarantordoc. Dr. Ing. Monika LosertováSubject version guarantordoc. Dr. Ing. Monika Losertová
Study levelundergraduate or graduateRequirementChoice-compulsory type B
Year3Semesterwinter
Study languageCzech
Year of introduction2022/2023Year of cancellation
Intended for the facultiesFMTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
LOS35 doc. Dr. Ing. Monika Losertová
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+2
Part-time Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

Student will be able: - to define perspective groups of nanomaterials. - to describe and characterize the application areas of nanomaterials. - to classify and clarify nanomaterial processing technologies. - to choose optimal metallurgical processes for the production of nanomaterials. - to evaluate and apply knowledge from nanomaterials preparation by intensive forming methods.

Teaching methods

Lectures
Seminars
Tutorials
Experimental work in labs
Project work

Summary

Předmět je zaměřen na charakteristiku vlastností a procesů přípravy jednotlivých typů nanostrukturních materiálů: Metody syntézy nanostrukturních materiálů (kondenzace, mechanické mletí a legování, prášková metalurgie, rozprašování suspenzí, elektrodepozice, devitrifikace amorfních fází apod.). Dále budou charakterizovány jednotlivé technologické postupy aplikované v technické praxi: Chemické metody přípravy nanomateriálů, pulzní laserové metody, pyrolýzní metody, aplikace vysokofrekvenčně generované plazmy. PVD, CVD, epitaxe. Nové poznatky z výzkumu nanotechnologií a nanostrukturních materiálů se zaměřením na jejich konstrukční využití. Technologie výroby polykomponentních kovových materiálů se základními stavebními jednotkami (rozměry, tvar, struktura, mezifázové rozhraní) menšími než 100 nm. Pozornost je věnována technologiím, které jsou založeny na velkých plastických deformacích (SPD) a řízených podmínkách tváření. Je prezentován vliv nekonvenčních technologií tváření ECAP (Equal Channel Angular Pressing), High-Pressure Torsion (HPT), CEC (Cyclic Extrusion Compression), TC (Torsion with Compression), Continuous Confined Strip Shearing (C2S2), Continuous DECAP, Conshearing (CS), Semi-solid Casting (tixoforming) na strukturu a mechanické vlastnosti kovových konstrukčních mikro- a nanomateriálů. Homogenita deformace v ultrajemnozrnných a nanostrukturních kovových materiálech připravených extrémní plastickou deformací. Stanovení napětí a deformaci u jednotlivých SPD technologií. Superplastické chování ultrajemnozrnných a nanostrukturních materiálů. Příprava nanostrukturních materiálů na bázi Ti a slitin Ti pro aplikace v medicíně.

Compulsory literature:

[1] BHUSHAN, B., ed. Springer handbook of nanotechnology. 3rd rev. and extended ed. Berlin: Springer, 2010. ISBN 978-3-642-02524-2. [2] WANG, Z. I. Characterization of Nanophase Materials. Weinheim, Germany, 2000, 406 p. [3] FENDLER, J.H., ed. Nanoparticles and nanostructured films: preparation, characterization and applications. Hoboken: John Wiley & Sons, 2007. ISBN 978-3-527-61207-9. [4] POOLE, Ch.P. a F.J. OWENS. Introduction to nanotechnology. Hoboken: Wiley, 2003. ISBN 0-471-07935-9. 387 p. ISBN 0-471-07935-9; RIETH, Michael. Nano-engineering in science and technology: an introduction to the world of nano-design. Singapore: World Scientific, c2003. ISBN 981-238-073-6.

Recommended literature:

[1] ZHU, Y. T., ed. Ultrafine grained materials II: proceedings of a symposium held during the 2002 TMS Annual Meeting in Seattle, Washington, February 17-21, 2002. Warrendale: Minerals, Metals & Materials Society, c2002. ISBN 0-87339-523-9. [2] WESTBROOK, J.H. a R.L. FLEISCHER, ed. Intermetallic compounds: principles and practice. Volume 3, Progress. Chichester: Wiley, c2002. ISBN 0-471-49315-5.

Way of continuous check of knowledge in the course of semester

Credit test.

E-learning

Other requirements

semestral project, lab works

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Characteristics of nanostructured materials, size and specific surface area of particles. Influence of material properties by the ratio of atoms in the volume and on the surface of the particles. Basic types of nanostructured materials and their applications. 2. Methods of preparation of nanostructured materials and their classification. Preparation of nanostructured materials from different phases (gas, liquid, aqueous solutions, suspensions, solid phases). Possibilities of preparation of nanostructured materials. 3. Preparation of nanostructured materials by condensation from inert gases. Preparation of nanostructured materials by PVS (Physical Vapor Synthesis). The reaction of the reaction gases with the vapor precursor. Effect of preparation conditions on properties. 4. Plasma processes of the preparation of nanostructured materials. Plasma characteristics, induction and arc plasma. Generation of plasma, evaporation and condensation of material. Chemical synthesis, pyrolysis processes. 5. Preparation of nanostructured materials by NAS (Nano Arc Synthesis). Utilization of arc discharge energy for the preparation of single-component and multi-component oxides of rare earth metals and transition metals. Methods of preparation of carbon nanostructured materials. 6. Methods for the preparation of solutions, microemulsions, aerosols, for the preparation of nanostructured and nanocomposite materials, mixed crystal compounds. Single-component and multi-component systems (WCo, WCoV, WCoCr2C3, etc.). 7. Preparation of nanostructured materials for fast melt solidification processes. Effect of melt chemical composition and cooling rate on structure and particle size. Preparation of fine-grained materials by atomization of metal melts using high-speed inert gas, influence of atomization conditions and melt composition on material structure. 8. Preparation of nano-structural materials by milling process in high-energy ball mills. Preparation of multi-component materials by the process of mechanical alloying (TiC, TiB2, ...). 9. Methods for evaluation of properties of nano-structural materials. Determination of size of particles, mechanical properties, evaluation of properties of thermally sprayed coatings and surface layers. Structural characteristics. Mechanical properties of nano-crystalline metals. Change of the properties of metallic materials in dependence on the grain size. Super-plastic behaviour. 10. Deformation of metals and alloys (elastic, plastic), methods for determination of plastic deformation (absolute, relative, true strain, deformation coefficients, the law of constancy of the volume). Analysis of plastic deformation performed by the SPD technology using computer simulation. Properties of metallic materials and nano-structural materials (Hall-Petch equation, strength, ductility, grain growth). 11. Technologies: Top-down, Bottom-up, SPD – UFG and NC material (ultra-fine grained and nano-structural materials). 12. Severe Plastic Deformation (SPD), methods for preparation of nano-crystalline metals: High-pressure torsion (HPT), Equal channel angular processing (ECAP, DECAP), Cyclic extrusion-compression (CEC), Accumulative roll-bonding (ARB), continuous processes (Conshearing, C2S2, CSPD) and tixoforming. 13. Basic thermodynamic conditions for production of nano-crystalline materials by severe plastic deformation. Application of technologies ECAP, CEC and TC, evolution of structure and properties of selected alloys. Influence of the shape of tools, comparison of different technologies, magnitude of deformation, stress state, evolution of structure, aging, recrystallisation, achievable properties. Analysis of thermo-mechanical conditions during the ECAP process using the software FormFEM. 14. The principle and the physical nature of the structure evolution at application of SPD technologies. Construction of individual devices, processed alloys and properties. Conditions of structure stability (instability). Analysis of the structure evolution with use of software. Industrial use of SPD technologies at production of nano-crystalline materials. Examples of the use of nano-crystalline materials in modern structures.

Conditions for subject completion

Part-time form (validity from: 2022/2023 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 45  25
        Examination Examination 55  15 3
Mandatory attendence participation: Execution of the given tasks.

Show history

Conditions for subject completion and attendance at the exercises within ISP: Completion of all compulsory tasks within individually agreed deadlines.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (B0715A270005) Materials technologies and recycling Vsz K Czech Ostrava 3 Choice-compulsory type B study plan
2024/2025 (B0715A270005) Materials technologies and recycling Vsz P Czech Ostrava 3 Choice-compulsory type B study plan
2023/2024 (B0715A270005) Materials technologies and recycling Vsz K Czech Ostrava 3 Choice-compulsory type B study plan
2023/2024 (B0715A270005) Materials technologies and recycling Vsz P Czech Ostrava 3 Choice-compulsory type B study plan
2022/2023 (B0715A270005) Materials technologies and recycling Vsz K Czech Ostrava 3 Choice-compulsory type B study plan
2022/2023 (B0715A270005) Materials technologies and recycling Vsz P Czech Ostrava 3 Choice-compulsory type B study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.