653-3042/01 – Microscopy of nanostructures (MiNan)

Gurantor departmentDepartment of Materials Engineering and RecyclingCredits7
Subject guarantordoc. Ing. Anastasia Volodarskaja, Ph.D.Subject version guarantordoc. Ing. Anastasia Volodarskaja, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2023/2024Year of cancellation
Intended for the facultiesFMTIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
GAB028 Ing. Roman Gabor, Ph.D.
VOD37 prof. Ing. Vlastimil Vodárek, CSc.
MAS0021 doc. Ing. Anastasia Volodarskaja, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+3

Subject aims expressed by acquired skills and competences

The goal of this course is to expand students' knowledge in the field of electron microscopy and scanning probe microscopy and their use in the field of nanomaterials and nanotechnology.

Teaching methods

Lectures
Individual consultations
Tutorials
Experimental work in labs

Summary

Obsah předmětu je zaměřen na metody studia struktury materiálů a jejich chemického a fázového složení metodami transmisní a skenovací elektronové mikroskopie a mikroskopie rastrovací sondou. Předmět rozvíjí dosavadní znalosti studentů a zaměřuje se zejména na aplikace v oblasti nanomateriálů a nanotechnologií. Studenti budou hlouběji seznámeni nejen se zmíněnými zobrazovacími metodami, s principy získání a zpracování příslušných obrazových záznamů a instrumentací jednotlivých mikroskopů. Teoreticky se seznámí s přístrojovou technikou, pomůckami a postupy určenými pro správnou přípravu vzorků. Dále se seznámí s kombinovanými technikami a korelativní mikroskopií, tedy technikami, které kombinují různé druhy zobrazování s analytickými metodami. Veškeré informace budou studentům podávány ve vztahu k nanotechnologiím a dokládány příklady a konkrétními snímky nanočástic/nanomateriálů a aplikací v nanovědách.

Compulsory literature:

BONNELL, D. editor. Scanning Probe Microscopy and Spectroscopy. Theory, Techniques and Applications. Wiley-VCH, 2001. WATT, I., M.: The Principles and Practice of Electron Microscopy. Cambridge University Press,1997.

Recommended literature:

WILLIAMS, D. B. a C. B. CARTER. Transmission electron microscopy, A textbook for materials science. 2nd edition, Springer US, 2012. ISBN 978-0-387-76502-0. ENGLER, O. a V. RANDLE. Introduction to texture analysis: macrotexture, microtexture and orientation mapping. 2nd edition, Boca Raton: CRC Press, 2010. ISBN 9781420063653. ASM handbook, volume 10 - materials characterization. 5th edition, Ohio: ASM international, 1998. ISBN 978-0-87170-016-2.

Way of continuous check of knowledge in the course of semester

Continuous verification of learning outcomes: full-time study form – 2 written tests, development of 3 protocols based on the task performed in practical exercises; combined study form – 1 semestral project. Final verification of study results: oral or written exam.

E-learning

LMS Moodle

Other requirements

For this subject other requirements for student are not determined.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

-History of light microscopy. The principle of the light microscope. Preparation of samples. Examples of typical light metallography tasks. -Discovery of the electron, history of electron microscopy. Wavelength, accelerating voltage, resolution, calculation of resolution and magnification of an electron microscope. The basic working principle of transmission and scanning electron microscopes. -Vacuum systems of electron microscopes. Lighting system, types of electron sources. Imaging defects, chromatic aberration, astigmatism. Depth of sharpness. Electromagnetic lenses. -Interaction of the primary electron beam with matter, types of collisions. Interpretation of images in secondary electrons (SE) and reflected electrons (BSE). SE and BSE detectors, phase (material) and topographic contrast, excitation volume. Charging the preparation and its elimination. Work in low vacuum mode. -Basic principles of sample preparation for scanning electron microscopy. Preparation of thin layers, sputtering with metal, carbon. Instrumentation for the preparation of preparations. Artifacts. -Scanning electron microscope. X-ray spectral microanalysis: wave dispersive and energy dispersive analysis. Line analysis and mapping. Spectroscopy of Auger electrons. Electron Backscattered Diffraction (EBSD). Scanning transmission electron microscope. Tabletop electron microscopes. - Mechanisms of contrast formation in transmission electron microscopy: amplitude and phase contrast, Z contrast. Basic principles of kinematic and dynamic theory of electron scattering, contrast on crystal lattice defects. -Preparation of preparations for transmission electron microscopy. High resolution transmission electron microscopy (HRTEM). -Electron diffraction methods: selective electron diffraction and diffraction of a convergent electron beam. Interpretation of diffractograms obtained during the study of single crystals and polycrystals. EDX and EELS spectroscopic techniques. -Interaction of ion beam with matter. Dual beam microscopes, use of focused ion beam (FIB) for preparation of preparations for electron microscopy. 3D EBSD. -Connecting electron microscopy with atomic force microscopy. Correlative microscopy. Combination of electron microscopy with other analytical techniques (Raman spectroscopy, mass spectroscopy). -Theoretical foundations of scanning probe microscopy (SPM) methods. Breakdown of individual SPM techniques. Basic structural elements of microscopes. -Microscopic techniques AFM, STM, MFM. AP tomography.

Conditions for subject completion

Full-time form (validity from: 2023/2024 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 30  15
        Examination Examination 70  36 3
Mandatory attendence participation: • Min. 80 % povinná účast na cvičeních • Absolvování laboratorních úloh, odevzdání protokolů • Absolvování testů a/nebo písemek

Show history

Conditions for subject completion and attendance at the exercises within ISP: Completion of all compulsory tasks within individually agreed deadlines.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2025/2026 (N0719A270002) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2024/2025 (N0719A270002) Nanotechnology P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.