714-0266/01 – Matematika I (BcM1)

Garantující katedraKatedra matematiky a deskriptivní geometrieKredity7
Garant předmětuRNDr. Petr Volný, Ph.D.Garant verze předmětuFiktivní Uživatel
Úroveň studiapregraduální nebo graduálníPovinnostpovinný
Ročník1Semestrzimní
Jazyk výukyčeština
Rok zavedení2003/2004Rok zrušení2005/2006
Určeno pro fakultyFASTUrčeno pro typy studiabakalářské
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zápočet a zkouška 3+3

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Cíle a kompetence Matematika je na vysokých školách technických organickou součástí studia. Neměla by však být vnímána jako cíl, ale jako nezbytný prostředek ke studiu odborných předmětů. Cílem předmětu je proto naučit studenty nejenom základní matematické poznatky, postupy a metody, ale rovněž prohlubovat jejich logické myšlení. Studenti by se měli naučit analyzovat problém, odlišovat podstatné od nepodstatného, navrhnout postup řešení, kontrolovat jednotlivé kroky řešení, zobecňovat vytvořené závěry, vyhodnocovat správnost výsledků vzhledem k zadaným podmínkám, aplikovat úlohy na řešení technických problémů, pochopit, že matematické metody a myšlenkové postupy jsou použitelné i jinde než pouze v matematice.

Vyučovací metody

Přednášky
Individuální konzultace
Cvičení (v učebně)
Ostatní aktivity

Anotace

Předmět navazuje na středoškolské učivo. Je rozčleněn na tři kapitoly - diferenciální počet funkcí jedné proměnné, lineární algebru a analytickou geometrii v trojrozměrném Eukleidovském prostoru E3. Cílem první kapitoly je zvládnout pojem funkce a její vlastnosti, limitu funkcí, derivaci funkcí a její aplikace. Ve druhé kapitole je kladen důraz především na soustavy lineárních rovnic a metody jejich řešení. Třetí kapitola seznamuje se základy vektorového počtu a základními lineárními útvary v trojrozměrném prostoru.

Povinná literatura:

Burda, Pavel; Havelek, Radim; Hradecká, Radoslava; Kreml, Pavel: Matematika I, VŠB – TUO, Ostrava 2006, 80-248-1199-5 (CD-R). Burda, Pavel; Kreml, Pavel: Diferenciální počet funkcí jedné proměnné. Matematika IIa, VŠB – TUO, Ostrava 2004, ISBN 80-248-0634-7. Burda, Pavel; Havelek, Radim; Hradecká, Radoslava: Algebra a analytická geometrie, 2. vyd., VŠB – TUO, Ostrava 2005, 80-248-0966-4. http://www.studopory.vsb.cz/studijnimaterialy/MatematikaI/MI.html http://mdg.vsb.cz/portal

Doporučená literatura:

Vrbenská, Helena; Bělohlávková, Jana;: Základy matematiky pro bakaláře I, 2. vyd., VŠB – TUO, Ostrava 2003, 80-248-0519-7, 978-80-248-0519-1. Láníček, Josef; Mičulka, Břetislav; Píšová, Dagmar; Restl, Čestmír; Řehák, Miroslav: Cvičení z matematiky I. VŠB – TUO, Ostrava 1999, 80-7078-973-5. Dobrovská, Věra; Mičulka, Břetislav; Šarmanová, Jana; Žižka, Jan: Cvičení z matematiky II, 9. vyd., VŠB – TUO, Ostrava 1997, 80-7078-987-5.

Forma způsobu ověření studijních výsledků a další požadavky na studenta

E-learning

Další požadavky na studenta

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

Osnova přednášek 1. Reálná funkce jedné reálné proměnné. Definice, graf. Funkce ohraničené, monotónní, sudé, liché, periodické. Funkce prosté, inverzní, složené. 2. Elementární funkce (včetně cyklometrických funkcí ). 3. Limita funkce a nevlastní limita funkce. Limity v nevlastních bodech. Spojité a nespojité funkce. 4. Diferenciální počet funkcí jedné proměnné. Derivace funkce, její geometrický a fyzikální význam. Pravidla derivování. 5. Derivace elementárních funkcí. 6. Diferenciál funkce. Derivace vyšších řádů. L’Hospitalovo pravidlo. 7. Použití derivací k zjišťování monotónnosti, konvexnosti a konkávnosti funkce. 8. Extrémy funkcí. Asymptoty. Sestrojení grafu funkce. 9. Lineární algebra a analytická geometrie. Vektorový prostor. Vektory, lineární závislost vektorů, lineární kombinace vektorů. Dimenze a báze vektorového prostoru. 10. Determinanty. Vlastnosti determinantů. Výpočet hodnoty determinantu. 11. Matice. Operace s maticemi. Hodnost matice a její výpočet. Inverzní matice. 12. Řešení soustav lineárních rovnic. Frobeniova věta. Cramerovo pravidlo, Gaussova eliminační metoda. Výpočet inverzní matice Gaussovou metodou. 13. Skalární, vektorový a smíšený součin vektorů a jejich vlastnosti. Rovnice roviny. 14. Rovnice přímky v prostoru E3.Vzájemná poloha rovin, přímek, přímky a roviny. Osnova cvičení 1. Definiční obor funkce. Funkce ohraničené, monotónní, sudé, liché, periodické. Funkce prosté, inverzní, složené. Elementární funkce. Cyklometrické funkce. Limity funkcí. Derivace a diferenciál funkcí. Výpočet limit funkcí L’Hospitalovým pravidlem. Monotónní funkce, extrémy. Konvexní a konkávní funkce, inflexní bod. Asymptoty křivky. Průběh funkce. Operace s aritmetickými vektory. Lineární závislost vektorů, lineární kombinace vektorů. Dimenze a báze vektorového prostoru. 2. test (užití derivací funkce) Determinanty. Úpravy determinantu. Výpočet determinantu rozvojem podle prvků libovolné řady. Základní operace s maticemi. Inverzní matice. Řešení soustav lineárních rovnic. 3. test (výpočet determinantu, hodnost matice, řešení soustavy, inverzní matice). Součiny vektorů. Rovnice roviny. Rovnice přímky. Vzájemné polohy útvarů.

Podmínky absolvování předmětu

Prezenční forma (platnost od: 1960/1961 letní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodů
Zápočet a zkouška Zápočet a zkouška 100 (100) 51
        Zápočet Zápočet 20 (20) 0
                Písemka Písemka 15  0
                Jiný typ úlohy Jiný typ úlohy 5  0
        Zkouška Zkouška 80 (80) 0
                Písemná zkouška Písemná zkouška 60  0
                Ústní zkouška Ústní zkouška 20  0
Rozsah povinné účasti:

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2004/2005 (B3651) Stavební inženýrství (3651R999) Společné studium FAST P čeština Ostrava 1 povinný stu. plán
2004/2005 (B3502) Architektura a stavitelství (3501R011) Architektura a stavitelství P čeština Ostrava 1 povinný stu. plán
2003/2004 (B3651) Stavební inženýrství (3651R999) Společné studium FAST P čeština Ostrava 1 povinný stu. plán
2003/2004 (B3502) Architektura a stavitelství (3501R011) Architektura a stavitelství P čeština Ostrava 1 povinný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku