714-0266/06 – Mathematics I (BcM1)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits6
Subject guarantorRNDr. Petr Volný, Ph.D.Subject version guarantorRNDr. Petr Volný, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2012/2013Year of cancellation2019/2020
Intended for the facultiesFASTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
DUB02 RNDr. Viktor Dubovský, Ph.D.
PAL39 RNDr. Radomír Paláček, Ph.D.
VOL06 RNDr. Petr Volný, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

Goals and competence Mathematics is an essential part of education on technical universities. It should be considered rather the method in the study of technical courses than a goal. Thus the goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods. Students should learn how to analyse problems, distinguish between important and unimportant, suggest a method of solution, verify each step of a method, generalize achieved results, analyse correctness of achieved results with respect to given conditions, apply these methods while solving technical problems, understand that mathematical methods and theoretical advancements outreach the field mathematics.

Teaching methods

Individual consultations
Other activities


Mathematics I is connected with secondary school education. It is divided in three parts, differential calculus of functions of one real variable, linear algebra and analytic geometry in the three dimensional Euclidean space E3. The aim of the first chapter is to handle the concept of a function and its properties, a limit of functions, a derivative of functions and its application. The second chapter emphasizes the systems of linear equations and the methods of their solution. The third chapter introduces the basics of vector calculus and basic linear objects in three dimensional space.

Compulsory literature:

Doležalová, J.: Mathematics I. VŠB – TUO, Ostrava 2005, ISBN 80-248-0796-3, http://mdg.vsb.cz/portal/en/Mathematics1.pdf. Trench, W.F.: Introduction to real analysis, Free Edition 1.06, January 2011, ISBN 0-13-045786-8.

Recommended literature:

Harshbarger, Ronald; Reynolds, James: Calculus with Applications, D.C. Heath and Company 1990, ISBN 0-669-21145-1.

Way of continuous check of knowledge in the course of semester

Passing the course, requirements Course-credit -participation on tutorials is obligatory, -elaborate programs, Point classification: 5-20 points. Exam Practical part of an exam is classified by 0 - 60 points. Practical part is successful if student obtains at least 25 points. Theoretical part of the exam is classified by 0 - 20 points. Theoretical part is successful if student obtains at least 5 points. Point quantification in the interval 100 - 91 90 - 81 80 - 71 70 - 61 60 - 51 50 - 0 ECTS grade A B C D E F Point quantification in the interval 100 - 86 85 - 66 65 - 51 50 - 0 National grading scheme excellent very good satisfactory failed List of theoretical questions 1. Definition of real functions of one real variable 2. Monotonic functions 3. Bounded functions 4. Even, odd and periodic functions 5. Composite functions 6. One-to-one functions, inverse functions 7. Trigonometric functions, D(f), H(f), graph 8. Inverse trigonometric functions, D(f), H(f), graph 9. Limit of a function 10. One-side limit 11. Limit theorems 12. Continuity of functions 13. Definition of derivation of function at a point 14. Geometrical meaning of derivation of function at a point 15. Derivation rules 16. Derivation of composite functions 17. Derivation of function f(x)^g(x) 18. Derivation of parametric and implicit functions 19. Differential of functions 20. Taylor polynomial 21. l´Hospital rule 22. Extrema of functions 23. Concavity, convexity, inflection points 24. Asymptotes 25. Matrices 26. Matrices, algebraic operations 27. Rank of a matrix 28. Determinant of a matrix 29. Inverse 30. System of linear equations 31. Frobenius theorem 32. Cramer´s rule 33. Gaussian elimination algorithm 34. Scalar and triple product of vectors 35. Cross product of vectors 36. Equation of a line in a 3-dimensional space 37. Equation of a plane in a 3-dimensional space 38. Relative position of two lines 39. Relative position of a line and plane 40. Relative position of two planes 41. Distance of a point from a line 42. Distance of a point from a plane 43. Angle between lines 44. Angle between a line and a plane 45. Transversal and common perpendicular of two skew lines


http://www.studopory.vsb.cz http://mdg.vsb.cz (in Czech language)

Other requirements

No further requirements.


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

Syllabus of lecture Mathematical analysis Real functions of one real variable. Definition, graph. Bounded functions, monotonic, even, odd and periodic functions. One-to-one functions, inverse and composite functions. Elementary functions (including inverse trigonometric functions). Limit of a function, infinite limit of a function. Limit at an improper point. Continuous and discontinuous functions. Differential calculus of functions of one real variable. Derivative of a function, its geometrical and physical meaning. Derivative rules. Derivative of elementary functions. Differential of a function. Derivative of higher orders. l’Hospital rule. Relation between derivative and monotonicity, convexity and concavity of a function. Extrema of a function. Asymptotes. Plot graph of a function. Linear algebra Linear algebra. Matrices. Matrix operations. Rank of a matrix. Inverse. Determinants, properties of a determinant. Solution of systems of linear equations. Frobenius theorem. Cramer’s rule. Gaussian elimination algorithm. Analytic geometry. Affine space. Euclidean space. Scalar, cross and triple product of vectors, properties. Equation of a plane, line in E3. Relative position problems. Metric or distance problems.

Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2017/2018 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2016/2017 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2015/2016 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2014/2015 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2013/2014 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2012/2013 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

2017/2018 Winter
2016/2017 Winter
2015/2016 Winter
2012/2013 Winter