714-0303/06 – Mathematics III (MIII)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits7
Subject guarantorFiktivní UživatelSubject version guarantordoc. RNDr. Jarmila Doležalová, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year2Semesterwinter
Study languageCzech
Year of introduction1999/2000Year of cancellation2004/2005
Intended for the facultiesFSIntended for study typesMaster
Instruction secured by
LoginNameTuitorTeacher giving lectures
DOL30 doc. RNDr. Jarmila Doležalová, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+3
Combined Credit and Examination 25+3

Subject aims expressed by acquired skills and competences

This course is closed.

Teaching methods

Summary

Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions, Euler method for homogeneous systems of n equations for n functions. Integral calculus of functions of several independent variables: two-dimensional integrals, three-dimensional integrals, vector analysis, line integral of the first and the second kind, surface integral of the first and second kind. Infinite series: number series, series of functions, power series.

Compulsory literature:

Škrášek, J.-Tichý, Z.: Základy aplikované matematiky II, SNTL Praha, 1986 Častová, N. a kol.: Cvičení z matematiky III, skriptum VŠB, Ostrava 1988 Burda, P.-Doležalová, J.: Cvičení z matematiky IV, skriptum VŠB, Ostrava 1990 Ševčík, Z.-Šimáček, L.: Sbírka řešených úloh z diferenciálních rovnic, skriptum VŠB, Ostrava 1986

Recommended literature:

Way of continuous check of knowledge in the course of semester

E-learning

Další požadavky na studenta

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Přednášky 1. Soustavy lineárních diferenciálních rovnic s konstantními koeficienty - definice, maticový zápis, řešení, fundamentální systém řešení, věta o existenci a jednoznačnosti řešení, eliminační metoda řešení. 2. Eulerova metoda řešení soustav LDR, charakteristické kořeny, čísla a vektory. 3. Základní typy úloh (charakteristické kořeny reálné různé, vícenásobné a komplexně sdružené). 4. Dvojný integrál na pravoúhelníku - integrabilní funkce, zavedení dělením pravoúhelníka, vlastnosti, Dirichletova věta. 5. Dvojný integrál na obecné uzavřené rovinné oblasti - normální oblast, Fubiniova věta. 6. Transformace do polárních a zobecněných polárních souřadnic, geometrický a fyzikální význam dvojného integrálu. 7. Trojný integrál na kvádru - integrabilní funkce, zavedení dělením kvádru, vlastnosti, Dirichletova věta. 8. Trojný integrál na obecné uzavřené trojrozměrné regulární oblasti, normální oblast, Fubiniova věta. 9. Transformace do cylindrických a sférických souřadnic, geometrické a fyzikální aplikace. 10. Vektorová analýza - vektorová funkce, její geometrický a fyzikální význam, skalární pole a jeho gradient, derivace ve směru, vektorové pole, jeho divergence a rotace, Hamiltonův a Laplaceův operátor, složené operátory. 11. Křivkový integrál I. a II. druhu - křivka, její zápis a orientace, zavedení křivkových integrálů dělením křivky, výpočet, fyzikální a geometrická interpretace, základní vlastnosti. 12. Greenova věta, nezávislost na integrační cestě, užití. 13. Plošný integrál I. a II. druhu, základní vlastnosti, Gauss- Ostrogradského věta, aplikace. 14. Nekonečné číselné řady - definice, součet řady, konvergence a divergence, nutná podmínka konvergence, harmonická a geometrická řada, Bolzano- Cauchyův konvergenční princip, zbytek řady. 15. Kritéria konvergence řad s kladnými členy - podílové, odmocninové, Raabeovo, integrální a srovnávací. 16. Alternující řady - absolutní a relativní konvergence, Leibnizovo kritérium, 17. Operace s řadami. 18. Nekonečné funkční řady - definice, obor konvergence, stejnoměrná konvergence, vlastnosti. 19. Mocninné řady - interval a poloměr konvergence. Cvičení 1. Lineární diferenciální rovnice II. řádu s konstantními koeficienty, eliminační metoda řešení soustav LDR. 2. Eulerova metoda řešení homogenních soustav LDR - charakteristické kořeny reálné různé a vícenásobné. 3. Eulerova metoda řešení homogenních soustav LDR - charakteristické kořeny komplexně sdružené. 4. 1. test - soustavy LDR (maximálně 30 minut). Dvojný integrál na souřadnicovém pravoúhelníku. 5. Dvojný integrál na obecné uzavřené rovinné oblasti. 6. Transformace do polárních souřadnic. 7. Geometrický a fyzikální význam dvojného integrálu. 8. Trojný integrál na souřadnicovém kvádru a na obecné uzavřené trojrozměrné regulární oblasti. 9. Transformace do cylindrických a sférických souřadnic. 10. Geometrické a fyzikální aplikace. 11. 2. test - dvojný a trojný integrál (maximálně 30 minut). Vektorová funkce. 12. Skalární pole a jeho gradient, derivace ve směru. 13. Vektorové pole, jeho divergence a rotace, složené operátory vektorové analýzy. 14. Křivkový integrál I. druhu v rovině i prostoru. 15. Křivkový integrál II. druhu v rovině i prostoru, Greenova věta, nezávislost na integrační cestě. 16. Fyzikální a geometrická interpretace křivkových integrálů. 17. 3. test - skalární a vektorové pole, křivkový integrál (maximálně 30 minut). Plošný integrál II. druhu na uzavřené ploše, Gauss-Ostogradského věta, tok vektoru plochou. 18. Číselné řady - nekonečná geometrická řada, kritéria konvergence řad s kladnými členy. 19. Obor konvergence funkčních řad. 20. Mocninné řady.

Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2003/2004 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering K Czech Ostrava 2 Compulsory study plan
2002/2003 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering K Czech Ostrava 2 Compulsory study plan
2002/2003 (M2301) Mechanical Engineering (2301T666) Strojnictví /přestupy/ P Czech Ostrava 2 Compulsory study plan
2002/2003 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering P Czech Ostrava 2 Compulsory study plan
2002/2003 (M2301) Mechanical Engineering (2301T666) Strojnictví /přestupy/ K Czech Ostrava 2 Compulsory study plan
2001/2002 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering K Czech Ostrava 2 Compulsory study plan
2001/2002 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering P Czech Ostrava 2 Compulsory study plan
2001/2002 (M2301) Mechanical Engineering (2301T666) Strojnictví /přestupy/ P Czech Ostrava 2 Compulsory study plan
2001/2002 (M2301) Mechanical Engineering (2301T666) Strojnictví /přestupy/ K Czech Ostrava 2 Compulsory study plan
2000/2001 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering K Czech Ostrava 2 Compulsory study plan
2000/2001 (M2301) Mechanical Engineering (2301T999) Mechanical Engineering P Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner