714-0367/02 – Mathematics II (MII)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits5
Subject guarantorIng. Petra Schreiberová, Ph.D.Subject version guarantorIng. Petra Schreiberová, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction1999/2000Year of cancellation2019/2020
Intended for the facultiesFSIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
H1O40 Mgr. Iveta Cholevová, Ph.D.
KOT31 RNDr. Jan Kotůlek, Ph.D.
KRC76 Mgr. Jiří Krček
SKN002 Ing. Petra Schreiberová, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Combined Credit and Examination 12+4

Subject aims expressed by acquired skills and competences

Mathematics is essential part of education on technical universities. It should be considered rather the method in the study of technical courses than a goal. Thus the goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods. Students should learn how to analyze problems, distinguish between important and unimportant, suggest a method of solution, verify each step of a method, generalize achieved results, analyze correctness of achieved results with respect to given conditions, apply these methods while solving technical problems, understand that mathematical methods and theoretical advancements outreach the field mathematics.

Teaching methods

Lectures
Individual consultations
Tutorials
Other activities

Summary

Integral calculus of function of one real variable: the indefinite and definite integrals, properties of the indefinite and definite integrals, application in the geometry and physics. Differential calculus of functions of several independent variables. Ordinary differential equations of the first and the second order.

Compulsory literature:

Kreml, P.: Mathematics II, VŠB – TUO, Ostrava 2005, ISBN 80-248-0798-X

Recommended literature:

Harshbarger, R.J.-Reynolds, J.J.: Calculus with Applications. D.C.Heath and Company, Lexington1990, ISBN 0-669-21145-1 James, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456

Way of continuous check of knowledge in the course of semester

zápočet za zpracování zadaného programu může student získat až 20 bodů zkouška Kombinovanou zkoušku tvoří praktická část (60 minut, příklady) a teoretická část (20 minut, teoretické otázky). Praktická část je hodnocena 0 - 60 body, teoretická část 0 - 20 body. Aby student u zkoušky uspěl musí získat v praktické části nejméně 25 bodů a v teoretické části nejméně 5 bodů. klasifikace získané body známka 86 - 100 výborně 66 - 85 velmi dobře 51 - 65 dobře 0 - 50 nevyhověl Soubor otázek k teoretické části zkoušky 1. Primitivní funkce a neurčitý integrál 2. Integrace neurčitého integrálu substitucí 3. Integrace neurčitého integrálu metodou per partes 4. Integrace funkce racionální lomené. 5. Integrace goniometrických funkcí 6. Integrace iracionálních funkcí, vyšší transcendentní funkce. 7. Pojem Riemannova určitého integrálu 8. Vlastnosti Riemannnových určitých integrálů 9. Substituce v určitém integrálu 10. Geometrické aplikace určitého integrálu 11. Určení obsahu rovinné plochy 12. Určení objemu rotačního tělesa 13. Určení délky křivky 14. Určení povrchu rotační plochy 15. Funkce více proměnných – definice, definiční obor, graf 16. Parciální derivace funkce více proměnných 17. Totální diferenciál funkce více proměnných 18. Rovnice tečné roviny a normály k ploše 19. Extrémy funkce více proměnných 20. Obyčejné diferenciální rovnice 21. Typy řešení diferenciálních rovnic 22. Diferenciální rovnice se separovanými proměnnými 23. Separovatelná diferenciální rovnice 24. Homogenní diferenciální rovnice 25. Lineární diferenciální rovnice 1. řádu, metoda variace konstanty 26. Cauchyho úloha 27. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty - metoda variace konstant 28. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty - metoda neurčitých koeficientů

E-learning

http://www.studopory.vsb.cz http://mdg.vsb.cz

Další požadavky na studenta

There are no further requirements put on the student.

Prerequisities

Subject codeAbbreviationTitleRequirement
714-0365 ZM Basics of Mathematics Compulsory
714-0366 MI Mathematics I Compulsory

Co-requisities

Subject has no co-requisities.

Subject syllabus:

I Integral calculus of functions of one variable Antiderivatives and indefinite integral. Integration of elementary functions, integration by substitutions, integration by parts, integration of rational functions, definite integral and methods of integration, Geometric application of definite integrals. II Differential calculus of functions of two or more real variables Functions of two or more variables, graph, partial derivatives of the 1-st and higher order, total differential of functions of two variables, tangent plane and normal to a surface, extrema of functions. III Ordinary differential equations General, particular and singular solutions, separable homogeneous equations, homogeneous equations, linear differential equations of the first order, method of variation of arbitrary constant, 2nd order linear differential equations with constant coefficients, linearly independent solutions, Wronskian, fundamental system of solutions, 2nd order LDE with constant coefficients - method of variation of arbitrary constants, method of undetermined coefficients, application of differential equations.

Conditions for subject completion

Combined form (validity from: 1960/1961 Summer semester, validity until: 2013/2014 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 20 (20) 0
                Other task type Other task type 20  0
        Examination Examination 80 (80) 0
                Written examination Written examination 60  0
                Oral Oral examination 20  0
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2018/2019 (B3907) Energetics (3907R012) Energetics of the 21st Century K Czech Ostrava 1 Compulsory study plan
2017/2018 (B3907) Energetics (3907R012) Energetics of the 21st Century K Czech Ostrava 1 Compulsory study plan
2016/2017 (B3907) Energetics (3907R012) Energetics of the 21st Century K Czech Ostrava 1 Compulsory study plan
2015/2016 (B3907) Energetics (3907R012) Energetics of the 21st Century K Czech Ostrava 1 Compulsory study plan
2004/2005 (B2341) Engineering (2341R999) Bachelor Mechanical Engineering (00) Bachelor Machanical Engineering K Czech Ostrava 1 Compulsory study plan
2003/2004 (B2341) Engineering (2341R999) Bachelor Mechanical Engineering (00) Bachelor Machanical Engineering K Czech Ostrava 1 Compulsory study plan
2002/2003 (B2341) Engineering (2341R999) Bachelor Mechanical Engineering (00) Bachelor Machanical Engineering K Czech Ostrava 1 Compulsory study plan
2001/2002 (B2341) Engineering (2341R999) Bachelor Mechanical Engineering (00) Bachelor Machanical Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner