714-0377/02 – Geometrie (G)
Garantující katedra | Katedra matematiky a deskriptivní geometrie | Kredity | 4 |
Garant předmětu | RNDr. Milan Doležal, CSc. | Garant verze předmětu | Mgr. Jana Bělohlávková |
Úroveň studia | pregraduální nebo graduální | Povinnost | povinný |
Ročník | 1 | Semestr | letní |
| | Jazyk výuky | čeština |
Rok zavedení | 2006/2007 | Rok zrušení | 2011/2012 |
Určeno pro fakulty | FS | Určeno pro typy studia | bakalářské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
• pěstovat rozvoj prostorové představivosti
• ovládat různé druhy zobrazovacích metod, rozumět jejich principům, znát jejich vlastnosti, výhody a nevýhody
• obeznámit se s geometrickými vlastnostmi křivek a ploch užívaných v technické praxi daného oboru
Vyučovací metody
Přednášky
Individuální konzultace
Cvičení (v učebně)
Ostatní aktivity
Anotace
Konstruktivní geometrie svými metodami a svou stavbou význačně přispívá k
rozvoji prostorové představivosti, tvůrčích schopností a logického myšlení.
Předmět konstruktivní geometrie obsahuje v podstatě dvě oblasti: zobrazovací
metody a geometrii křivek a ploch.
Úkolem první oblasti je seznámit studenty s vhodnými zobrazovacími metodami
(Mongeovou projekcí a pravoúhlou axonometrií), které jsou potřebné pro praxi
technika - strojaře.
Úkolem druhé oblasti je seznámení s geometrickými vlastnostmi křivek
(rovinných
i prostorových), ploch (řezy, průniky, rozvinutí rozvinutelných ploch) a se
základy kinematické geometrie v rovině, které jsou potřebné při jejich
konstrukcích a zobrazování. Výběr a rozsah látky je zaměřen na technicky
významné křivky a plochy se zřetelem k jejich praktické aplikaci ve strojních
oborech.
Povinná literatura:
Doporučená literatura:
Urban, A.: Deskriptivní geometrie I, II, Praha, SNTL, 1967.
Medek, V. - Zámožík, J.: Konstr. geom. pre technikov, ALFA, Bratislava, 1978.
Další studijní materiály
Forma způsobu ověření studijních výsledků a další požadavky na studenta
zápočet
Za účast na konzultacích v rozsahu 50 - 100 % může student získat 10 – 20 bodů, v případě účasti nižší může student získat 5 bodů za zpracování zadaného programu.
Odevzdání 3 rysů v předepsané kvalitě a úpravě.
Celkem maximálně 20 bodů.
zkouška
Kombinovanou zkoušku tvoří praktická část (100 minut, 4 příklady) a teoretická část (20 minut, teoretické otázky). Praktická část je hodnocena 0 - 60 body, teoretická část 0 - 20 body. Aby student u zkoušky uspěl musí získat v praktické části nejméně 25 bodů a v teoretické části nejméně 5 bodů.
klasifikace
získané body známka
86 - 100 výborně
66 - 85 velmi dobře
51 - 65 dobře
0 - 50 nevyhověl
Soubor otázek k teoretické části zkoušky
1. Mongeova projekce - základní úlohy polohy.
2. Mongeova projekce - základní úlohy metrické.
3. Pravoúhlá axonometrie - základní úlohy polohy.
4. Pravoúhlý průmět kružnice. (Proužková konstrukce elipsy, sdružené průměry elipsy, Rytzova konstrukce).
5. Zobrazení kružnice v Mongeově projekci a v pravoúhlé axonometrii.
6. Hranolová plocha, hranol, řez rovinou.
7. Válcová plocha, válec, řez rovinou.
8. Jehlanová plocha, jehlan, řez rovinou.
9. Kulová plocha, koule, řez rovinou. Princip konstrukce průsečíků přímky s plochou a tělesem.
10. Ohniskové vlastnosti kuželoseček.
11. Konstrukce kuželoseček z daných prvků.
12. Rotační plochy - vytvoření, meridiány, rovnoběžky, tečná rovina. Zobrazení plochy v Mongeově projekci a v pravoúhlém promítání na nárysnu. Řez plochy rovinou.
13. Rotační kvadratické plochy - vytvoření, klasifikace, řezy rovinou.
14. Průniky rotačních ploch - metody konstrukce v závislosti na vzájemné poloze os ploch a na volbě zobrazovací metody.
15. Průniky rotačních kvadratických ploch - průmět do roviny určené jejich rovnoběžnými nebo různoběžnými osami.
16. Šroubovice - definice, průvodní trojhran, řídící kužel tečen.
17. Šroubové plochy - vytvoření, klasifikace, vlastnosti, zobrazení.
E-learning
http://www.studopory.vsb.cz
http://mdg.vsb.cz
Další požadavky na studenta
Prerekvizity
Předmět nemá žádné prerekvizity.
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
Program přednášek
=================
I Úvod do předmětu konstruktivní geometrie, osová afinita, Mongeova projekce - úlohy polohy, metrické úlohy
II Pravoúhlá axonometrie - základní úlohy polohy, Pravoúhlý průmět kružnice (proužková konstrukce, Rytzova konstrukce), Zobrazení kružnice v Mongeově projekci a v pravoúhlé axonometrii, (jenom kružnice ležící v průmětně)
III Hranolová plocha, válcová plocha - řez rovinou, Středová kolineace, jehlanová plocha - řez rovinou
IV Kuželová plocha, kulová plocha - řez rovinou kolmou k průmětně, Průsečíky přímky s tělesem
V Rotační plochy - vytvoření, užití, Průniky rotačních ploch
VI Šroubovice, šroubové plochy
Program seminářů + individuální práce studentů
==============================================
1 Konstrukce těles z daných prvků
Řezy tělesa rovinou, průsečíky přímky s tělesem
Rotační plochy - vytvoření, průniky
Šroubovice, šroubová plocha
Individuální práce studentů
===========================
1 rys - konstrukce tělesa z daných podmínek (3 h )
1 rys - řez tělesa rovinou, průsečík přímky s tělesem (3 h )
1 rys - šroubovice, šroubová plocha (3 h )
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky