714-0433/01 – Tensor Analysis (TA)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits2
Subject guarantordoc. RNDr. Jaroslav Vlček, CSc.Subject version guarantordoc. RNDr. Jaroslav Vlček, CSc.
Study levelundergraduate or graduateRequirementChoice-compulsory
Year2Semestersummer
Study languageCzech
Year of introduction2003/2004Year of cancellation2009/2010
Intended for the facultiesFEIIntended for study typesMaster
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+1
Part-time Credit and Examination 2+1

Subject aims expressed by acquired skills and competences

Students learn to use tensor calculus. They shlould know how to analyze a problem, to choose and correctly use appropriate algorithm, to apply their knowledge to solve technical problems.

Teaching methods

Lectures
Individual consultations
Tutorials
Project work

Summary

The elements of tensor algebra and tensor analysis in cartesian and/or orthogonal curvilinear coordinate systems. Tensor fields are studied using local and global characteristics. The applications are illustrated in static and dynamic elasticity as well as on several problems of electromagnetic field in anisotropic materials. More of applications (hydrodynamics et al.) can be chosen when needed.

Compulsory literature:

Akivis, M. A. - Goldberg, V. V.: An Introduction to Linear Algebra and Tensors. Dover Publ., New York etc., 1993

Recommended literature:

Maxum, B.: Field Mathematics for Electromagnetics, Photonics and Material Science. SPIE Press, Bellingham, USA, 2004

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Kartézské tenzory. Tenzorová analýza v kartézských souřadných systémech. Tenzorová analýza v křivočarých ortogonálních souřadných systémech. Lokální a globální charakteristiky tenzorových polí. Tenzorový aparát statické teorie pružnosti. Rovnice dynamické teorie pružnosti. Elektromagnetické pole v anizotropním prostředí (elektrooptické a magnetooptické jevy).

Conditions for subject completion

Full-time form (validity from: 1960/1961 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (145) 51 3
        Examination Examination 100  0 3
        Exercises evaluation Credit 45  0 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2005/2006 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Choice-compulsory study plan
2005/2006 (N2646) Information Technology (1103T021) Computational Mathematics K Czech Ostrava 2 Choice-compulsory study plan
2004/2005 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Choice-compulsory study plan
2004/2005 (N2646) Information Technology (1103T021) Computational Mathematics K Czech Ostrava 2 Choice-compulsory study plan
2003/2004 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.