# 714-0566/03 – Bachelor Mathematics I (BM I)

 Gurantor department Department of Mathematics and Descriptive Geometry Credits 5 Subject guarantor Mgr. Dagmar Dlouhá, Ph.D. Subject version guarantor Mgr. Dagmar Dlouhá, Ph.D. Study level undergraduate or graduate Requirement Compulsory Year 1 Semester summer Study language English Year of introduction 2016/2017 Year of cancellation Intended for the faculties HGF Intended for study types Bachelor, Follow-up Master
Instruction secured by
DLO44 Mgr. Dagmar Dlouhá, Ph.D.
DRO03 Mgr. Jaroslav Drobek, Ph.D.
KOT31 RNDr. Jan Kotůlek, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 18+0

### Subject aims expressed by acquired skills and competences

Mathematics is essential part of education on technical universities. It should be considered rather the method in the study of technical courses than a goal. Thus the goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods.Students should learn how toanalyze problems, distinguish between important and unimportant, suggest a method of solution, verify each step of a method, generalize achieved results, analyze correctness of achieved results with respect to given conditions, apply these methods while solving technical problems, understand that mathematical methods and theoretical advancements outreach the field mathematics.

### Teaching methods

Lectures
Individual consultations
Tutorials

### Summary

The contents of the course is the introduction of common mathematical concepts and interpretation of their relations in connection to the methods of solving selected problems of three basic parts of mathematics, according to which the learning material is structured. In Differential Calculus, the main motive is the preparation to general use of derivatives of real functions of one variable. Under Linear algebra is an emphasis on interpretation of the basic methods for solving systems of linear equations. In Analytic geometry, there are, based on vector calculus, described basic linear formations of three-dimensional Euclidean space and some tools to evaluate their mutual position from qualitative and also quantitative point of view.

### Compulsory literature:

Doležalová, J.: Mathematics I. VŠB – TUO, Ostrava 2005, ISBN 80-248-0796-3

### Recommended literature:

Harshbarger, Ronald; Reynolds, James: Calculus with Applications, D.C. Heath and Company 1990, ISBN 0-669-21145-1 Leon, S., J.: Linear Algebra with Aplications, Macmillan Publishing Company, New York, 1986, ISBN 0-02-369810-1

### Way of continuous check of knowledge in the course of semester

Course-credit - participation on tutorials is obligatory, 20% of absence can be apologized, - elaborate 2-3 programs, - pass the written 3 tests, conditions satisfying for 5 points, tests for 0 - 15 points. Summary course classification: 5-20 points. Exam Practical part of an exam is classified by 0 - 60 points. Practical part is successful if student obtains at least 25 points. Theoretical part of the exam is classified by 0 - 20 points. Theoretical part is successful if student obtainsat least 5 points. Point quantification in the interval 100 - 91 90 - 81 80 - 71 70 - 61 60 - 51 50 - 0 ECTS grade A B C D E F Point quantification in the interval 100 - 86 85 - 66 65 - 51 51 - 0 National grading scheme excellent very good satisfactory failed

### E-learning

http://www.studopory.vsb.cz http://mdg.vsb.cz

There are no other requests for students.

### Prerequisities

Subject codeAbbreviationTitleRequirement
714-0565 ZM Basics of Mathematics Compulsory

### Co-requisities

Subject has no co-requisities.

### Subject syllabus:

1 Functions of one real variable (definitions and basic properties) 2 Elementary functions 3 Limit of the function, continuity of the functions , basic rules 4 Differential calculus functions of one real variable. the derivative of function (basic rules for differentiation). 5 Derivatives of selected functions 6 Differential of the function, Taylor polynom, parametric differentiation, highes-order derivative, L'Hospital rule 7 Applications of the derivatives, convexity and concavity of a function 8 Extremes of function, asmptotes, function graph constructing 9 Linear algebra: Vectors, linear independence. Matrices (basic properties) 10 Determinants (basic properties, calculation, evaluation) 11 Rank of matrix, matrix inversion 12 Systems of linear equations, Frobenius theorem, Gaussian elimination 13 Products of vectors (basic properties) 14 Line and plane equation in E3, mutual positions of lines and planes

### Conditions for subject completion

Full-time form (validity from: 2016/2017 Winter semester, validity until: 2016/2017 Summer semester)
Min. number of points
Credit and Examination Credit and Examination 100 (100) 51
Credit Credit 20 (20) 5
Test Written test 15  0
Examination Examination 80 (80) 30
Written examination Written examination 60  25
Verbal examination Oral examination 20  5
Mandatory attendence parzicipation: 3 absences on practise max.

Show history

### Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2018/2019 (B2110) Geological Engineering (2101R003) Geological Engineering P English Ostrava 1 Compulsory study plan
2018/2019 (B1316) Geodesy, Cartography and Geoinformatics (3646R006) Geoinformatics P English Ostrava 1 Compulsory study plan
2018/2019 (B2111) Mining (2101R013) Mining of Mineral Resources and Their Utilization P English Ostrava 1 Compulsory study plan
2017/2018 (B1316) Geodesy, Cartography and Geoinformatics (3646R006) Geoinformatics P English Ostrava 1 Compulsory study plan
2017/2018 (B2111) Mining (2101R013) Mining of Mineral Resources and Their Utilization P English Ostrava 1 Compulsory study plan
2017/2018 (B2110) Geological Engineering (2101R003) Geological Engineering P English Ostrava 1 Compulsory study plan
2016/2017 (B1316) Geodesy, Cartography and Geoinformatics (3646R006) Geoinformatics P English Ostrava 1 Compulsory study plan
2016/2017 (B2110) Geological Engineering (2101R003) Geological Engineering P English Ostrava 1 Compulsory study plan
2016/2017 (B2111) Mining (2101R013) Mining of Mineral Resources and Their Utilization P English Ostrava 1 Compulsory study plan

### Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner