714-0766/01 – Mathematical modeling of engineering problems (MMIU)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits3
Subject guarantordoc. RNDr. Jaroslav Vlček, CSc.Subject version guarantordoc. RNDr. Jaroslav Vlček, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2010/2011Year of cancellation2012/2013
Intended for the facultiesUSPIntended for study typesFollow-up Master, Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
VLC20 doc. RNDr. Jaroslav Vlček, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+1

Subject aims expressed by acquired skills and competences

Students learn structural approach to mathematical formulation of engineering problems. They shlould know how to analyze given problem, to formulate mathematical task, to choose and correctly use appropriate mathematical method.

Teaching methods

Lectures
Individual consultations
Tutorials
Project work

Summary

The topic offers a complex view on mathematical modeling of physical states and processes with emphasized orientation to the problems described by differential equations. Applications are devoted to the solving of real problems comming out from engineering praxis in regard to prevailing student specialization. The use of mathematical software is assumed,e.g. MATLAB.

Compulsory literature:

Vlček, J.: Mathematical modeling, http://homen.vsb.cz/~vlc20/ Mathematical Modelling (Ed. M.S. Klamkin). SIAM, 1989.

Recommended literature:

Friedman, A. - Littman, W.: Industrial Mathematics. SIAM, 1994. Mathematical Modeling with Multidisciplinary Applications. Edited by Xin-She Yang, John Wiley & Sons, Inc., UK, 2013

Way of continuous check of knowledge in the course of semester

Course-credit: -participation on tutorials is obligatory, 20% of absence can be apologized, -pass the written test (30 points), Point classification: 0-30 points. Exam Semestral thesis classified by 25 – 50 points. Theoretical part of the exam is classified by 0 - 20 points.

E-learning

www.mdg.vsb.cz

Other requirements

Elaboration of semestral project

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Principles of mathematical modeling 2. State, flow, material and source quantities 3. Basic relations: balance and constitutive 4. Local and global balance. 5. Classification of boundary problems 6. Corectness of mathematical model 7. One-dimensional stationary states 8. Multi-dimensional stationary states. 9. Non-stationary processes - one-dimensional case 10. Initial problems for multivariate problems 11.-13. Facultative themes

Conditions for subject completion

Full-time form (validity from: 2010/2011 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30 (30) 15
                Písemný test Written test 30  15
        Examination Examination 70 (70) 0 3
                Obhajoba projektu Semestral project 50  25
                Ústní zkouška Oral examination 20  0
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2012/2013 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2011/2012 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2010/2011 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2011/2012 Winter
2010/2011 Winter