717-2160/01 – Quantum Physics I (KFI)

Gurantor departmentDepartment of PhysicsCredits4
Subject guarantorMgr. Jana Trojková, Ph.D.Subject version guarantorDoc. Dr. RNDr. Petr Alexa
Study levelundergraduate or graduateRequirementChoice-compulsory
Study languageCzech
Year of introduction2016/2017Year of cancellation2017/2018
Intended for the facultiesFEI, USPIntended for study typesFollow-up Master, Bachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
ALE02 Doc. Dr. RNDr. Petr Alexa
TRO70 Mgr. Jana Trojková, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

Explain the fundamental principles of quantum-mechanical approach to problem solving. Apply this theory to selected simple problems. Discuss the achieved results and their measurable consequences.

Teaching methods



The course introduces the most important aspects of non-relativistic quantum mechanics. It includes the fundamental postulates of quantum mechanics and their applications to square wells and barriers, the linear harmonic oscillator and spherical potentials and the hydrogen atom. The remarcable properties of quantum particles and the resulting macroscopic effects are discussed.

Compulsory literature:

MERZBACHER, E.: Quantum mechanics, John Wiley & Sons, NY, 1998.

Recommended literature:

SAKURAI, J. J.: Modern Quantum mechanics, Benjamin/Cummings, Menlo Park, Calif. 1985 MERZBACHER, E.: Quantum mechanics, Wiley, New York 1970

Way of continuous check of knowledge in the course of semester


Other requirements

Systematic off-class preparation.


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

1. Introduction - historical context and the need for a new theory. 2. Postulates of quantum mechanics, Schrödinger equation, time dependent and stationary, the equation of continuity. 3. Operators - linear Hermitian operators, variables, measurability. Coordinate representation. 4. Basic properties of operators, eigenfunctions and eigenvalues, mean value, operators corresponding to the selected physical variables and their properties. 5. Free particle waves, wavepackets. The uncertainty relation. 6. Model applications of stationary Schrödinger equation - piece-wise constant potential, infinitely deep rectangular potential well - continuous and discrete energy spectrum. 7. Other applications: step potential, rectangular potential well, square barrier potentials - tunneling effect. 8. Approximations of selected real-life situations by rectangular potentials. 9. The harmonic oscillator in the coordinate representation and the Fock's representation. 10. Spherically symmetric field, the hydrogen atom. Spin. 11. Indistinguishable particles, the Pauli principle. Atoms with more than one electrons. Optical and X-ray spectrum. 12. The basic approximations in the theory of chemical bonding. 13. Interpretation of quantum mechanics.

Conditions for subject completion

Full-time form (validity from: 2016/2017 Winter semester, validity until: 2017/2018 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 40 (40) 20
                První zápočtový test Written test 20  8 2
                Druhý zápočtový test Written test 20  8 2
        Examination Examination 60 (60) 16 3
                Písemná část Written examination 30  15
                Ústní část Oral examination 30  1
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2017/2018 (N2658) Computational Sciences (2612T078) Computational Sciences P Czech Ostrava 1 Choice-compulsory study plan
2016/2017 (N2658) Computational Sciences (2612T078) Computational Sciences P Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.