717-3712/01 – Theory of Solids (TPL)

Gurantor departmentDepartment of PhysicsCredits5
Subject guarantorprof. Dr. RNDr. Jiří LuňáčekSubject version guarantorprof. Dr. RNDr. Jiří Luňáček
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2016/2017Year of cancellation2017/2018
Intended for the facultiesHGF, USPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
LUN10 prof. Dr. RNDr. Jiří Luňáček
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+1

Subject aims expressed by acquired skills and competences

Explain basic ideas in the solid state physics – free electrons and the band model Collect and interpret fundamental differences between metals and semiconductors Collect and explain basic sort of magnetism in solid state physics Formulate fundamental principles and concepts in the transport phenomena theory in solid state physics

Teaching methods

Project work


This subject supposes knowledge of quantum mechanics, thermodynamics and statistical physics and creates theoretical shell of following lectures: Solid State Physics, Metallic and Non-metallic materials. Theoretical models (used in Solid State Physics) will be showed to understand of material properties that are important for physical engineering (particularly metals and semiconductors).

Compulsory literature:

Wert, Ch.A., Thomson, R.M.: Physics of Solids. McGraw-Hill., N.Y., 1964. Kittel, Ch.: Introductions to Solid State Physics, John Wiley and Sons, first edition, Cambridge 1953, (and next).

Recommended literature:

1) Borg, R.J. – Dienes, G.J.: The Physical Chemistry of Solids, Academic Press, Inc., London 1992 - ISBN 0 12 118420 X 2) Cohen, M.L. and Louie, S.G.: Fundamentals of Condensed Matter Physics, Cambridge University Press, 2017.

Way of continuous check of knowledge in the course of semester


Další požadavky na studenta

Paper from the selected problem.


Subject codeAbbreviationTitleRequirement
717-2713 FPL Solid State Physics Recommended


Subject has no co-requisities.

Subject syllabus:

1. Free electrons in metals 1.1. Energy levels, electron gas and specific heat 1.2. Ohm law and heat conduction in metals 2. Energy bands 2.1. Nearly-free electrons 2.2. Bloch theorem and Kronig-Penny model 2.3. Metals and isolators 2.4. Description methods 3. Semiconductor crystals 3.1. Frbidden band 3.2. Equations of electron motion 3.3. holes and effective mass 3.4. Basic parameters of band structures 4. Fermi surfaces and metals 4.1. Construction of Fermi surfaces 4.2. Experimental methods 5. Diamagnetism a paramagnetism 5.1. Langevin theory 5.2. Outline of the semi-quantum and quantum theory of paramagnetism 6. Ferromagnetism and antiferromagnetism 6.1. Arrangement 6.2. Ferromagnetism domains

Conditions for subject completion

Full-time form (validity from: 2016/2017 Winter semester, validity until: 2017/2018 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 33 (33) 17
                Projekt Project 30  15
                Jiný typ úlohy Other task type 3  1
        Examination Examination 67 (67) 34
                Písemná část Written test 50  25
                Ústní část Oral examination 17  10
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2017/2018 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Compulsory study plan
2016/2017 (N1701) Physics (1702T001) Applied physics P Czech Ostrava 1 Compulsory study plan
2016/2017 (N1701) Physics (1702T001) Applied Physics P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner