717-3924/02 – Nanosensors and Spintronics (NaS)

Gurantor departmentDepartment of PhysicsCredits4
Subject guarantordoc. Dr. Mgr. Kamil PostavaSubject version guarantordoc. Dr. Mgr. Kamil Postava
Study levelundergraduate or graduateRequirementOptional
Year2Semestersummer
Study languageEnglish
Year of introduction2016/2017Year of cancellation
Intended for the facultiesUSPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
HAM0016 Mgr. Jaroslav Hamrle, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+1

Subject aims expressed by acquired skills and competences

Modify and reconstruct the mathematical models for the description of electromagnetic waves propagation in nanostructures. Formulate the physical fundamentals for nanosensors and spintronics. Evaluate and predict the applications.

Teaching methods

Lectures

Summary

Předmět vychází ze současného stavu rychle se rozvíjejícího oboru spintroniky, t.j. elektroniky využívající spin elektronu. Předmět pokrývá většinu důležitých směrů současné spintroniky. Předmět začíná definicí popisem elektronu a jeho spinu v pevné látce, pokračuje popisem spinově-polarizovaného proudu a spinové akumulace. Poté je uveden princip generace spinově polarizovaného proudu v nemagnetických materiálech, jak pomocí spinové injekce, tak pomocí spin-pumping. Dále jsou diskutovány nejdůležitější magnetoresistivní jevy (AMR, GMR, TMR), stejně tak jako spinový moment (spinový transfer). Následuje několik prototypových příkladů použití těchto jevů v laterálních systémech a v průmyslových aplikacích. Závěrem je stručný úvod do spin-kalorimetrie a do materiálů používaných ve spintronice.

Compulsory literature:

1. Nanomagnetism and Spintronics, Teruya Shinjo (Editor), Elsevier (2009). 2. Concepts in spin-electronics, S. Maekawa, Oxford University Press (2006). 3. F.J. Jedema, PhD. thesis, University of Groningen, The Netherlands (2002). 4. T. Valet and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099 (1993). 5. T. Yang, T. Kimura and Y. Otani, Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching, Nature Physics 4, 851 (2008).

Recommended literature:

GRIMES, Craig A., DICKEY, Elizabeth C., PISHKO, Michael V.: Encyclopedia of Sensors, American Scientific Publishers, 10 dílů, ISBN: 1-59883-056-X, 2005.

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

Systematic off-class preparation.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Quantum description of the electron (wavefunction, uncertainty principle, tunelling). Orbital and spin moment of the electron. Non-collinear magnetization. Pauli matrices. 2. Electron in solid-state. Fermi level, Fermi-Dirac distribution. Difusive and ballistic transport of electron in solids. 3. Spin accumulation and spin-polarized current. Injection of spin-polarized current from ferromagnet to dia/para-magnetic materials using charge current. Valet-Fert theory. Conduction mismatch. 4. Magnetoresistive effects. Anisotropic magnetoresistivity (AMR). Giant magnetoresistance (GMR). Coherent and non-coherent tunnel magnetoresistance (TMR). 5. Generation of spin current by spin pumping. Basics of magnetization dynamics (FMR resonance, Landau-Lifschitz equation) in presence of spin-polarized current. Spin moment (i.e. spin transfer) – effect of spin-polarized current on magnetization. Domain wall manipulation by spin current. Magnetic spin oscillators (free, coupled). 6. Lateral devices using spin-polarized current. Local and non-local spin-injection. Three-dimensional flow of spin current. 7. Fundamentals of devices using spin-polarized current (GMR-TMR head, hard-disk, MRAM paměti, race track memory, spin oscillators). 8. Spin-Hall effect. Inverzní spin-Hall effect. Spinová calorimetry. Generation of spin current by temperature gradient. 9. Spin current in metals. Materials for spintronics. Relation between spin polarization and Fermi level. Spin relaxation. Half-metals, half-metallic Heusler compounds. 10. Spin current in semiconductors and organic materials. Rashba effect. Relation between spin-polarized current and radiated light polarization.

Conditions for subject completion

Full-time form (validity from: 2016/2017 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Credit and Examination Credit and Examination 100  51
        Credit Credit  
        Examination Examination  
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2017/2018 (N3942) Nanotechnology (3942T001) Nanotechnology P English Ostrava 2 Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner