9350-3016/01 – Reactor engineering (RI)
Gurantor department | Institute of Environmental Technology | Credits | 10 |
Subject guarantor | prof. Ing. Lucie Obalová, Ph.D. | Subject version guarantor | prof. Ing. Lucie Obalová, Ph.D. |
Study level | postgraduate | Requirement | Choice-compulsory type B |
Year | | Semester | winter + summer |
| | Study language | Czech |
Year of introduction | 2018/2019 | Year of cancellation | |
Intended for the faculties | USP, FMT, FS | Intended for study types | Doctoral |
Subject aims expressed by acquired skills and competences
The aim of the course is to master the procedures for the design and simulation of batch and flow reactors for homogeneous and heterogeneous reactions.
Teaching methods
Individual consultations
Summary
The aim of the course is to master the procedures for the design and simulation of batch and flow reactors for homogeneous and heterogeneous reactions.
Compulsory literature:
FOGLER, H. S. Elements of Chemical Reaction Engineering. New York: Prentice Hall, 1999.
FROMENT, G. F., BISCHOFF, K. B. Chemical Reactor Analysis and Design, Wiley Series in
Chemical Engineering, 2010.
LEVENSPIEL, O. The Chemical Reactor Omnibook, Oregon: Corvallis, 1979.
Recommended literature:
WESTERTERP, K.R., VAN SWAAIJ, W. P. M., BEENACKERS, A. A. C. M., Chemical
Reactor Design and Operation, Enschede: Twente University of Technology, 2000.
NAUMAN, E. B. Chemical Reactor Design, Optimization, and Scale up, The McGraw-Hill Companies, Inc., 2002.
GIANETTO, A., SILVESTON, P. L. Multiphase Chemical Reactors – Theory, Design, Scaleup. Springer-Verlag, 1986.
Additional study materials
Way of continuous check of knowledge in the course of semester
Oral exam
E-learning
Other requirements
V rámci předmětu studenti vypracují zadané příklady.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Základními tématy jsou:
Termodynamika chemických reakcí. Tepelný efekt chemické reakce. Gibbsova energie a
termodynamická schůdnost. Rovnovážný stupeň přeměny.
Elementární reakce v ideálních izotermních reaktorech. Složené reakce. Vsádkové reaktory
s proměnným objemem a tlakem. Reaktory s pístovým tokem pro reakce v kapalné a plynné
fázi. Ideálně míchané reaktory. Polokontinuální reaktory.
Energetická bilance, neizotermní reaktory. Optimální pracovní teplota. Adiabatické reaktory.
Vícenásobné ustálené stavy.
Výzkum kinetiky chemických reakcí. Makrokinetické a mikrokinetické vlastnosti. Zásady
návrhu laboratorního reaktoru. Metody zpracování kinetických dat. Zvětšování měřítka.
Reálný tok. Metody diagnostiky hydrodynamiky toku v reálných reaktorech. Distribuce doby
prodlení. Modely toku pro reálné trubkové reaktory - laminární a turbulentní tok, axiální
disperze, kaskáda ideálních mísičů. Makrotekutina a mikrotekutina, segregační model.
Heterogenní katalytické reaktory. Kinetické rovnice pro katalytické reakce. Modely
heterogenních katalytických reaktorů. Efektivní faktor. Tlaková ztráta v sypaném loži.
Vícefázové reaktory.
Témata pro detailní studium budou vybrána na základě zaměření disertační práce.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction
Předmět neobsahuje žádné hodnocení.