9360-0140/01 – Methods of structure and phase analysis of nanomaterials (STRAN)

Gurantor departmentCNT - Nanotechnology CentreCredits3
Subject guarantorMgr. Kateřina Mamulová Kutláková, Ph.D.Subject version guarantorMgr. Kateřina Mamulová Kutláková, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2010/2011Year of cancellation
Intended for the facultiesUSPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
CAP01 prof. RNDr. Pavla Čapková, DrSc.
MAM02 Mgr. Kateřina Mamulová Kutláková, Ph.D.
MAT27 doc. Ing. Vlastimil Matějka, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+0

Subject aims expressed by acquired skills and competences

The use of diffraction methods (X-ray, electron, neutron, synchrotron radiation) for structure and phase analysis of nanomaterials.

Teaching methods

Lectures
Individual consultations
Experimental work in labs

Summary

Crystallochemistry and structures in solids. Structures of crystallic, amorphous and mesomorphous phases. Modern methods of solid state characterisation. In materials research, the scientist has many analytical questions related to the crystalline constitution of material samples. X-ray diffraction is the only laboratory technique that reveals structural information, such as chemical composition, crystal structure, crystallite size, strain, preferred orientation and layer thickness. Materials researchers therefore use X-ray diffraction to analyze a wide range of materials, from powders and thin films to nanomaterials and solid objects.

Compulsory literature:

DE GRAEF, Marc a Michael E MCHENRY. Structure of materials: an introduction to crystallography, diffraction and symmetry. 2nd ed., fully rev. and updated. New York: Cambridge University Press, 2012. ISBN 978-1-107-00587-7. CHUNG, Frank H a Deane Kingsley SMITH, ed. Industrial applications of X-ray diffraction. New York: Marcel Dekker, c2000. ISBN 0-8247-1992-1. GIACOVAZZO, Carmelo. Fundamentals of crystallography. Oxford: Oxford University Press, c1992. ISBN 0-19-855579-2.

Recommended literature:

GLUSKER, Jenny Pickworth a Kenneth N TRUEBLOOD. Crystal structure analysis: a primer. 2nd ed. New York: Oxford University Press, 1985. ISBN 0-19-503531-3.

Way of continuous check of knowledge in the course of semester

E-learning

Další požadavky na studenta

For this subject are not the requirements for the student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Introduction- history, basic terms (definition of crystal, lattice types, Miller's indexes, crystallographic systems, minimal symmetry rules, reciprocal lattice). 2. Point symmetry, stereographic projection. 3. Group theory, crystallographic group of symmetry, symbols. 4. Matrix representation of symmetry operations. 5. Space group of symmetry; symbols, graphical illustration. 6. Crystallochemistry, crystallization processes, types of structure defects, crystal structure and chemical bond. 7. X-ray; principle, formation, forms, properties, registration, interaction with matter. 8. Diffraction of X-rays; Laue and Bragg equations; structural factor F (hkl). 9. X-ray diffraction methods, classification based on Ewald's scheme, Laue, Debye Scherrer, powder methods. 10. Powder diffractometers, indexation of powder patterns records, focusing methods, practical applications of powder methods. 11. Single crystal techniques; Weissenberg and precession method, types of diffractometers, complete X-ray analysis of crystal compounds.

Conditions for subject completion

Full-time form (validity from: 2010/2011 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100  51
        Exercises evaluation Credit  
        Examination Examination  
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2019/2020 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2018/2019 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2017/2018 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2016/2017 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2015/2016 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2014/2015 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2014/2015 (N3942) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2013/2014 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2012/2013 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2011/2012 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan
2010/2011 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner