9360-0151/02 – Nanocarbons (UN)
Gurantor department | CNT - Nanotechnology Centre | Credits | 5 |
Subject guarantor | prof. Ing. Gražyna Simha Martynková, Ph.D. | Subject version guarantor | prof. Ing. Gražyna Simha Martynková, Ph.D. |
Study level | undergraduate or graduate | Requirement | Optional |
Year | 2 | Semester | winter |
| | Study language | Czech |
Year of introduction | 2012/2013 | Year of cancellation | 2020/2021 |
Intended for the faculties | USP | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
Graduates will be able to understand the carbon and nanocarbon materials, he will have knowledge of application and preparation of these materials.
Teaching methods
Lectures
Project work
Summary
The course focuses on analysis of nanostructure and properties of carbon materials with applications in nanotechnology. In addition to fundamental analysis nanostructure and properties of traditional carbon materials (graphite, diamond) the attention is focused mainly to new carbon nanomaterials (fullerenes, fullerides, fullerites, nanotubular forms, porous activated carbon and soot). For individual groups of materials are given their potential and current application.
Compulsory literature:
Recommended literature:
PANG,J.;BACHMATIUK,A.; IBRAHIM,I.;FU,L.; PLACHA D.;MARTYNKOVA, G.S. ...,CVD growth of 1D and 2D sp2 carbon nanomaterials,Journal of materials science 51 (2), 640-667, 2016
Additional study materials
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
For this subject other requirements for student are not determined.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Carbon and carbonaceous materials: basic forms of carbon, description, characteristics. 2. Polytypismus graphite structure and structural disorders: basic concepts and structure, X-ray diffraction identification. faults. 3. Intercalated supramolecular structure based on graphite: Preparation and properties, interaction mechanisms. 4th The structure of diamond: Polytypismus, disorders, diamond nanocrystals. Synthesis of diamond, applications. 5. Magnetic forms of carbon: graphite, ferromagnetic, magnetic nano-foam structure and properties. 6. Evaluation of structural disorder: type definitions, the crystallite size Lc and La. 7. Thin films based on graphite and diamond: Atmospheric deposition of thin layers (CVD, CVI), Nanotribology, applications. 8th Fullerenes: Structure, properties, synthesis, extraction and purification, isomers, utilization. 9th Fullerides, fullerites, their formation and nanostructure: Fullerenes crystals and soot. Endohedral, substitution and exohedral fullerides, applications. 10. Carbon fibers: HM, LM and IM fibers, production and structure of fiber (PAN, pitch) nanofibers. 11. Nanotubular carbon: Forms, collapse graphene layers, synthesis and structure of the MWNT / SWNT, preparation technique. Intekalation, performance, nano-objects of the nanotube. 12. Pyrolytic carbon, active carbon, carbon black: structure, preparation and properties, synthesis (CVD), macro--, meso-, micro-and nanopores. 13. Composites: Polymer metal and carbon composites and carbon-carbon composites. Thermosets and thermoplastics for the matrix.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction