9600-0006/01 – Modelování složitých systémů (MSS)

Garantující katedraIT4InnovationsKredity10
Garant předmětuprof. Ing. Ivo Vondrák, CSc.Garant verze předmětuprof. Ing. Ivo Vondrák, CSc.
Úroveň studiapostgraduálníPovinnostpovinně volitelný typu B
RočníkSemestrzimní + letní
Jazyk výukyčeština
Rok zavedení2015/2016Rok zrušení
Určeno pro fakultyUSP, FEIUrčeno pro typy studiadoktorské
Výuku zajišťuje
Os. čís.JménoCvičícíPřednášející
VON05 prof. Ing. Ivo Vondrák, CSc.
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zkouška 2+0
kombinovaná Zkouška 10+0

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Cílem předmětu je seznámit posluchače doktorského studia s problematikou modelování, simulace a analýzy složitých systémů aktuálními dostupnými metodami a technologiemi právě vyvíjenými.

Vyučovací metody

Přednášky
Individuální konzultace

Anotace

V rámci předmětu budou diskutovány algoritmy z oblasti modelování, simulace složitých systémů a z nich vyplývající analýza rozsáhlých kolekcí experimentálních dat. V rámci kurzu bude diskutována metodologie modelování systémů, definovány základní třídy úloh z oblasti jejich spojité, diskrétní či kombinované simulace. V dalším budou probrány jazyky pro modelování postavené na semiformálních (UML) či formálních přístupech (Petriho sítě, Pi-calcullus). Plánování a následné provádění simulačních experimentů vede k vytváření rozsáhlých kolekcí dat, které je nutno následně analyzovat prostřednictvím metod postavených na neuronových sítích, vyhledávání nejbližšího souseda ve vysoce dimenzionálních datech, zpracování proudových dat, identifikace asociačních pravidel, shlukování, algoritmech analýzy a odhalování struktury velkých grafů, technikách pro získávání významných charakteristik z rozsáhlých datových kolekcí pomocí redukce dimenze a algoritmů strojového učení jakými jsou perceptronové sítě a SVM. V rámci kurzu bude kladen důraz na použití metod optimalizovaných pro HPC servery a nově vyvíjených metod pro akcelerátory.

Povinná literatura:

• Kreuzer, W., System simulation, programming styles and languages, Addison Wesley, 1986 • Jure Leskovec, Anand Rajaraman, Jeff Ullman: Mining of Massive Datasets, Cambridge University Press, 2014, ISBN 978-1107077232

Doporučená literatura:

• Wil van der Aalst, Kees van Hee: Worklflow Management, Models, Methods, and Systems. MIT Press, 2002 • Guojun Gan, Chaoqun Ma, Jianhong Wu: Data Clustering: Theory, Algorithms, and Applications, SIAM, Society for Industrial and Applied Mathematics, 2007, ISBN 978-0898716238

Forma způsobu ověření studijních výsledků a další požadavky na studenta

E-learning

Další požadavky na studenta

Žádné další požadavky.

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

V rámci předmětu budou diskutovány algoritmy z oblasti modelování, simulace složitých systémů a z nich vyplývající analýza rozsáhlých kolekcí experimentálních dat. V rámci kurzu bude diskutována metodologie modelování systémů, definovány základní třídy úloh z oblasti jejich spojité, diskrétní či kombinované simulace. V dalším budou probrány jazyky pro modelování postavené na semiformálních (UML) či formálních přístupech (Petriho sítě, Pi-calcullus). Plánování a následné provádění simulačních experimentů vede k vytváření rozsáhlých kolekcí dat, které je nutno následně analyzovat prostřednictvím metod postavených na neuronových sítích, vyhledávání nejbližšího souseda ve vysoce dimenzionálních datech, zpracování proudových dat, identifikace asociačních pravidel, shlukování, algoritmech analýzy a odhalování struktury velkých grafů, technikách pro získávání významných charakteristik z rozsáhlých datových kolekcí pomocí redukce dimenze a algoritmů strojového učení jakými jsou perceptronové sítě a SVM. V rámci kurzu bude kladen důraz na použití metod optimalizovaných pro HPC servery a nově vyvíjených metod pro akcelerátory.

Podmínky absolvování předmětu

Prezenční forma (platnost od: 2015/2016 zimní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodů
Zkouška Zkouška  
Rozsah povinné účasti:

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2020/2021 (P0613D140020) Výpočetní vědy K čeština Ostrava povinně volitelný typu B stu. plán
2020/2021 (P0613D140020) Výpočetní vědy P čeština Ostrava povinně volitelný typu B stu. plán
2019/2020 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy P čeština Ostrava povinně volitelný stu. plán
2019/2020 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy K čeština Ostrava povinně volitelný stu. plán
2019/2020 (P0613D140020) Výpočetní vědy P čeština Ostrava povinně volitelný typu B stu. plán
2019/2020 (P0613D140020) Výpočetní vědy K čeština Ostrava povinně volitelný typu B stu. plán
2018/2019 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy P čeština Ostrava povinně volitelný stu. plán
2018/2019 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy K čeština Ostrava povinně volitelný stu. plán
2017/2018 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy P čeština Ostrava povinně volitelný stu. plán
2017/2018 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy K čeština Ostrava povinně volitelný stu. plán
2016/2017 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy P čeština Ostrava povinně volitelný stu. plán
2016/2017 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy K čeština Ostrava povinně volitelný stu. plán
2015/2016 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy P čeština Ostrava povinně volitelný stu. plán
2015/2016 (P2658) Výpočetní vědy (2612V078) Výpočetní vědy K čeština Ostrava povinně volitelný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku